//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef ARMSUBTARGET_H #define ARMSUBTARGET_H #include "MCTargetDesc/ARMMCTargetDesc.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/ADT/Triple.h" #include #define GET_SUBTARGETINFO_HEADER #include "ARMGenSubtargetInfo.inc" namespace llvm { class GlobalValue; class StringRef; class ARMSubtarget : public ARMGenSubtargetInfo { protected: enum ARMProcFamilyEnum { Others, CortexA8, CortexA9, CortexA15, Swift }; /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. ARMProcFamilyEnum ARMProcFamily; /// HasV4TOps, HasV5TOps, HasV5TEOps, HasV6Ops, HasV6T2Ops, HasV7Ops - /// Specify whether target support specific ARM ISA variants. bool HasV4TOps; bool HasV5TOps; bool HasV5TEOps; bool HasV6Ops; bool HasV6T2Ops; bool HasV7Ops; /// HasVFPv2, HasVFPv3, HasVFPv4, HasNEON - Specify what /// floating point ISAs are supported. bool HasVFPv2; bool HasVFPv3; bool HasVFPv4; bool HasNEON; /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been /// specified. Use the method useNEONForSinglePrecisionFP() to /// determine if NEON should actually be used. bool UseNEONForSinglePrecisionFP; /// UseMulOps - True if non-microcoded fused integer multiply-add and /// multiply-subtract instructions should be used. bool UseMulOps; /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates /// whether the FP VML[AS] instructions are slow (if so, don't use them). bool SlowFPVMLx; /// HasVMLxForwarding - If true, NEON has special multiplier accumulator /// forwarding to allow mul + mla being issued back to back. bool HasVMLxForwarding; /// SlowFPBrcc - True if floating point compare + branch is slow. bool SlowFPBrcc; /// InThumbMode - True if compiling for Thumb, false for ARM. bool InThumbMode; /// HasThumb2 - True if Thumb2 instructions are supported. bool HasThumb2; /// IsMClass - True if the subtarget belongs to the 'M' profile of CPUs - /// v6m, v7m for example. bool IsMClass; /// NoARM - True if subtarget does not support ARM mode execution. bool NoARM; /// PostRAScheduler - True if using post-register-allocation scheduler. bool PostRAScheduler; /// IsR9Reserved - True if R9 is a not available as general purpose register. bool IsR9Reserved; /// UseMovt - True if MOVT / MOVW pairs are used for materialization of 32-bit /// imms (including global addresses). bool UseMovt; /// SupportsTailCall - True if the OS supports tail call. The dynamic linker /// must be able to synthesize call stubs for interworking between ARM and /// Thumb. bool SupportsTailCall; /// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF /// only so far) bool HasFP16; /// HasD16 - True if subtarget is limited to 16 double precision /// FP registers for VFPv3. bool HasD16; /// HasHardwareDivide - True if subtarget supports [su]div bool HasHardwareDivide; /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode bool HasHardwareDivideInARM; /// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack /// instructions. bool HasT2ExtractPack; /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier /// instructions. bool HasDataBarrier; /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions /// over 16-bit ones. bool Pref32BitThumb; /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions /// that partially update CPSR and add false dependency on the previous /// CPSR setting instruction. bool AvoidCPSRPartialUpdate; /// HasRAS - Some processors perform return stack prediction. CodeGen should /// avoid issue "normal" call instructions to callees which do not return. bool HasRAS; /// HasMPExtension - True if the subtarget supports Multiprocessing /// extension (ARMv7 only). bool HasMPExtension; /// FPOnlySP - If true, the floating point unit only supports single /// precision. bool FPOnlySP; /// AllowsUnalignedMem - If true, the subtarget allows unaligned memory /// accesses for some types. For details, see /// ARMTargetLowering::allowsUnalignedMemoryAccesses(). bool AllowsUnalignedMem; /// Thumb2DSP - If true, the subtarget supports the v7 DSP (saturating arith /// and such) instructions in Thumb2 code. bool Thumb2DSP; /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; /// CPUString - String name of used CPU. std::string CPUString; /// TargetTriple - What processor and OS we're targeting. Triple TargetTriple; /// SchedModel - Processor specific instruction costs. const MCSchedModel *SchedModel; /// Selected instruction itineraries (one entry per itinerary class.) InstrItineraryData InstrItins; public: enum { isELF, isDarwin } TargetType; enum { ARM_ABI_APCS, ARM_ABI_AAPCS // ARM EABI } TargetABI; /// This constructor initializes the data members to match that /// of the specified triple. /// ARMSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS); /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size /// that still makes it profitable to inline the call. unsigned getMaxInlineSizeThreshold() const { // FIXME: For now, we don't lower memcpy's to loads / stores for Thumb1. // Change this once Thumb1 ldmia / stmia support is added. return isThumb1Only() ? 0 : 64; } /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef FS); void computeIssueWidth(); bool hasV4TOps() const { return HasV4TOps; } bool hasV5TOps() const { return HasV5TOps; } bool hasV5TEOps() const { return HasV5TEOps; } bool hasV6Ops() const { return HasV6Ops; } bool hasV6T2Ops() const { return HasV6T2Ops; } bool hasV7Ops() const { return HasV7Ops; } bool isCortexA7() const { return CPUString == "cortex-a7"; } bool isCortexA8() const { return ARMProcFamily == CortexA8; } bool isCortexA9() const { return ARMProcFamily == CortexA9; } bool isCortexA15() const { return ARMProcFamily == CortexA15; } bool isSwift() const { return ARMProcFamily == Swift; } bool isCortexM3() const { return CPUString == "cortex-m3"; } bool isLikeA9() const { return isCortexA9() || isCortexA15(); } bool hasARMOps() const { return !NoARM; } bool hasVFP2() const { return HasVFPv2; } bool hasVFP3() const { return HasVFPv3; } bool hasVFP4() const { return HasVFPv4; } bool hasNEON() const { return HasNEON; } bool useNEONForSinglePrecisionFP() const { return hasNEON() && UseNEONForSinglePrecisionFP; } bool hasDivide() const { return HasHardwareDivide; } bool hasDivideInARMMode() const { return HasHardwareDivideInARM; } bool hasT2ExtractPack() const { return HasT2ExtractPack; } bool hasDataBarrier() const { return HasDataBarrier; } bool useMulOps() const { return UseMulOps; } bool useFPVMLx() const { return !SlowFPVMLx; } bool hasVMLxForwarding() const { return HasVMLxForwarding; } bool isFPBrccSlow() const { return SlowFPBrcc; } bool isFPOnlySP() const { return FPOnlySP; } bool prefers32BitThumb() const { return Pref32BitThumb; } bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; } bool hasRAS() const { return HasRAS; } bool hasMPExtension() const { return HasMPExtension; } bool hasThumb2DSP() const { return Thumb2DSP; } bool hasFP16() const { return HasFP16; } bool hasD16() const { return HasD16; } const Triple &getTargetTriple() const { return TargetTriple; } bool isTargetIOS() const { return TargetTriple.getOS() == Triple::IOS; } bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } bool isTargetNaCl() const { return TargetTriple.getOS() == Triple::NativeClient; } bool isTargetELF() const { return !isTargetDarwin(); } bool isAPCS_ABI() const { return TargetABI == ARM_ABI_APCS; } bool isAAPCS_ABI() const { return TargetABI == ARM_ABI_AAPCS; } bool isThumb() const { return InThumbMode; } bool isThumb1Only() const { return InThumbMode && !HasThumb2; } bool isThumb2() const { return InThumbMode && HasThumb2; } bool hasThumb2() const { return HasThumb2; } bool isMClass() const { return IsMClass; } bool isARClass() const { return !IsMClass; } bool isR9Reserved() const { return IsR9Reserved; } bool useMovt() const { return UseMovt && hasV6T2Ops(); } bool supportsTailCall() const { return SupportsTailCall; } bool allowsUnalignedMem() const { return AllowsUnalignedMem; } const std::string & getCPUString() const { return CPUString; } unsigned getMispredictionPenalty() const; /// enablePostRAScheduler - True at 'More' optimization. bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const; /// getInstrItins - Return the instruction itineraies based on subtarget /// selection. const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every /// function for this subtarget. unsigned getStackAlignment() const { return stackAlignment; } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect /// symbol. bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const; }; } // End llvm namespace #endif // ARMSUBTARGET_H