; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s ; RUN: grep {shlh } %t1.s | count 9 ; RUN: grep {shlhi } %t1.s | count 3 ; RUN: grep {shl } %t1.s | count 9 ; RUN: grep {shli } %t1.s | count 3 ; RUN: grep {xshw } %t1.s | count 5 ; RUN: grep {and } %t1.s | count 5 ; RUN: grep {andi } %t1.s | count 2 ; RUN: grep {rotmi } %t1.s | count 2 ; RUN: grep {rotqmbyi } %t1.s | count 1 ; RUN: grep {rotqmbii } %t1.s | count 2 ; RUN: grep {rotqmby } %t1.s | count 1 ; RUN: grep {rotqmbi } %t1.s | count 1 ; RUN: grep {rotqbyi } %t1.s | count 1 ; RUN: grep {rotqbii } %t1.s | count 2 ; RUN: grep {rotqbybi } %t1.s | count 1 ; RUN: grep {sfi } %t1.s | count 3 target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128" target triple = "spu" ; Vector shifts are not currently supported in gcc or llvm assembly. These are ; not tested. ; Shift left i16 via register, note that the second operand to shl is promoted ; to a 32-bit type: define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) { %A = shl i16 %arg1, %arg2 ret i16 %A } define i16 @shlh_i16_2(i16 %arg1, i16 %arg2) { %A = shl i16 %arg2, %arg1 ret i16 %A } define i16 @shlh_i16_3(i16 signext %arg1, i16 signext %arg2) signext { %A = shl i16 %arg1, %arg2 ret i16 %A } define i16 @shlh_i16_4(i16 signext %arg1, i16 signext %arg2) signext { %A = shl i16 %arg2, %arg1 ret i16 %A } define i16 @shlh_i16_5(i16 zeroext %arg1, i16 zeroext %arg2) zeroext { %A = shl i16 %arg1, %arg2 ret i16 %A } define i16 @shlh_i16_6(i16 zeroext %arg1, i16 zeroext %arg2) zeroext { %A = shl i16 %arg2, %arg1 ret i16 %A } ; Shift left i16 with immediate: define i16 @shlhi_i16_1(i16 %arg1) { %A = shl i16 %arg1, 12 ret i16 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i16 @shlhi_i16_2(i16 %arg1) { %A = shl i16 %arg1, 0 ret i16 %A } define i16 @shlhi_i16_3(i16 %arg1) { %A = shl i16 16383, %arg1 ret i16 %A } ; Should generate 0, 0 << arg1 = 0 define i16 @shlhi_i16_4(i16 %arg1) { %A = shl i16 0, %arg1 ret i16 %A } define i16 @shlhi_i16_5(i16 signext %arg1) signext { %A = shl i16 %arg1, 12 ret i16 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i16 @shlhi_i16_6(i16 signext %arg1) signext { %A = shl i16 %arg1, 0 ret i16 %A } define i16 @shlhi_i16_7(i16 signext %arg1) signext { %A = shl i16 16383, %arg1 ret i16 %A } ; Should generate 0, 0 << arg1 = 0 define i16 @shlhi_i16_8(i16 signext %arg1) signext { %A = shl i16 0, %arg1 ret i16 %A } define i16 @shlhi_i16_9(i16 zeroext %arg1) zeroext { %A = shl i16 %arg1, 12 ret i16 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i16 @shlhi_i16_10(i16 zeroext %arg1) zeroext { %A = shl i16 %arg1, 0 ret i16 %A } define i16 @shlhi_i16_11(i16 zeroext %arg1) zeroext { %A = shl i16 16383, %arg1 ret i16 %A } ; Should generate 0, 0 << arg1 = 0 define i16 @shlhi_i16_12(i16 zeroext %arg1) zeroext { %A = shl i16 0, %arg1 ret i16 %A } ; Shift left i32 via register, note that the second operand to shl is promoted ; to a 32-bit type: define i32 @shl_i32_1(i32 %arg1, i32 %arg2) { %A = shl i32 %arg1, %arg2 ret i32 %A } define i32 @shl_i32_2(i32 %arg1, i32 %arg2) { %A = shl i32 %arg2, %arg1 ret i32 %A } define i32 @shl_i32_3(i32 signext %arg1, i32 signext %arg2) signext { %A = shl i32 %arg1, %arg2 ret i32 %A } define i32 @shl_i32_4(i32 signext %arg1, i32 signext %arg2) signext { %A = shl i32 %arg2, %arg1 ret i32 %A } define i32 @shl_i32_5(i32 zeroext %arg1, i32 zeroext %arg2) zeroext { %A = shl i32 %arg1, %arg2 ret i32 %A } define i32 @shl_i32_6(i32 zeroext %arg1, i32 zeroext %arg2) zeroext { %A = shl i32 %arg2, %arg1 ret i32 %A } ; Shift left i32 with immediate: define i32 @shli_i32_1(i32 %arg1) { %A = shl i32 %arg1, 12 ret i32 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i32 @shli_i32_2(i32 %arg1) { %A = shl i32 %arg1, 0 ret i32 %A } define i32 @shli_i32_3(i32 %arg1) { %A = shl i32 16383, %arg1 ret i32 %A } ; Should generate 0, 0 << arg1 = 0 define i32 @shli_i32_4(i32 %arg1) { %A = shl i32 0, %arg1 ret i32 %A } define i32 @shli_i32_5(i32 signext %arg1) signext { %A = shl i32 %arg1, 12 ret i32 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i32 @shli_i32_6(i32 signext %arg1) signext { %A = shl i32 %arg1, 0 ret i32 %A } define i32 @shli_i32_7(i32 signext %arg1) signext { %A = shl i32 16383, %arg1 ret i32 %A } ; Should generate 0, 0 << arg1 = 0 define i32 @shli_i32_8(i32 signext %arg1) signext { %A = shl i32 0, %arg1 ret i32 %A } define i32 @shli_i32_9(i32 zeroext %arg1) zeroext { %A = shl i32 %arg1, 12 ret i32 %A } ; Should not generate anything other than the return, arg1 << 0 = arg1 define i32 @shli_i32_10(i32 zeroext %arg1) zeroext { %A = shl i32 %arg1, 0 ret i32 %A } define i32 @shli_i32_11(i32 zeroext %arg1) zeroext { %A = shl i32 16383, %arg1 ret i32 %A } ; Should generate 0, 0 << arg1 = 0 define i32 @shli_i32_12(i32 zeroext %arg1) zeroext { %A = shl i32 0, %arg1 ret i32 %A } ;; i64 shift left define i64 @shl_i64_1(i64 %arg1) { %A = shl i64 %arg1, 9 ret i64 %A } define i64 @shl_i64_2(i64 %arg1) { %A = shl i64 %arg1, 3 ret i64 %A } define i64 @shl_i64_3(i64 %arg1, i32 %shift) { %1 = zext i32 %shift to i64 %2 = shl i64 %arg1, %1 ret i64 %2 } ;; i64 shift right logical (shift 0s from the right) define i64 @lshr_i64_1(i64 %arg1) { %1 = lshr i64 %arg1, 9 ret i64 %1 } define i64 @lshr_i64_2(i64 %arg1) { %1 = lshr i64 %arg1, 3 ret i64 %1 } define i64 @lshr_i64_3(i64 %arg1, i32 %shift) { %1 = zext i32 %shift to i64 %2 = lshr i64 %arg1, %1 ret i64 %2 } ;; i64 shift right arithmetic (shift 1s from the right) define i64 @ashr_i64_1(i64 %arg) { %1 = ashr i64 %arg, 9 ret i64 %1 } define i64 @ashr_i64_2(i64 %arg) { %1 = ashr i64 %arg, 3 ret i64 %1 } define i64 @ashr_i64_3(i64 %arg1, i32 %shift) { %1 = zext i32 %shift to i64 %2 = ashr i64 %arg1, %1 ret i64 %2 } define i32 @hi32_i64(i64 %arg) { %1 = lshr i64 %arg, 32 %2 = trunc i64 %1 to i32 ret i32 %2 }