//===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the InlineAsm class. // //===----------------------------------------------------------------------===// #include "llvm/InlineAsm.h" #include "llvm/DerivedTypes.h" #include #include using namespace llvm; // Implement the first virtual method in this class in this file so the // InlineAsm vtable is emitted here. InlineAsm::~InlineAsm() { } // NOTE: when memoizing the function type, we have to be careful to handle the // case when the type gets refined. InlineAsm *InlineAsm::get(const FunctionType *Ty, const std::string &AsmString, const std::string &Constraints, bool hasSideEffects) { // FIXME: memoize! return new InlineAsm(Ty, AsmString, Constraints, hasSideEffects); } InlineAsm::InlineAsm(const FunctionType *Ty, const std::string &asmString, const std::string &constraints, bool hasSideEffects) : Value(PointerType::getUnqual(Ty), Value::InlineAsmVal), AsmString(asmString), Constraints(constraints), HasSideEffects(hasSideEffects) { // Do various checks on the constraint string and type. assert(Verify(Ty, constraints) && "Function type not legal for constraints!"); } const FunctionType *InlineAsm::getFunctionType() const { return cast(getType()->getElementType()); } /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the /// fields in this structure. If the constraint string is not understood, /// return true, otherwise return false. bool InlineAsm::ConstraintInfo::Parse(const std::string &Str, std::vector &ConstraintsSoFar) { std::string::const_iterator I = Str.begin(), E = Str.end(); // Initialize Type = isInput; isEarlyClobber = false; MatchingInput = -1; isCommutative = false; isIndirect = false; // Parse prefixes. if (*I == '~') { Type = isClobber; ++I; } else if (*I == '=') { ++I; Type = isOutput; } if (*I == '*') { isIndirect = true; ++I; } if (I == E) return true; // Just a prefix, like "==" or "~". // Parse the modifiers. bool DoneWithModifiers = false; while (!DoneWithModifiers) { switch (*I) { default: DoneWithModifiers = true; break; case '&': // Early clobber. if (Type != isOutput || // Cannot early clobber anything but output. isEarlyClobber) // Reject &&&&&& return true; isEarlyClobber = true; break; case '%': // Commutative. if (Type == isClobber || // Cannot commute clobbers. isCommutative) // Reject %%%%% return true; isCommutative = true; break; case '#': // Comment. case '*': // Register preferencing. return true; // Not supported. } if (!DoneWithModifiers) { ++I; if (I == E) return true; // Just prefixes and modifiers! } } // Parse the various constraints. while (I != E) { if (*I == '{') { // Physical register reference. // Find the end of the register name. std::string::const_iterator ConstraintEnd = std::find(I+1, E, '}'); if (ConstraintEnd == E) return true; // "{foo" Codes.push_back(std::string(I, ConstraintEnd+1)); I = ConstraintEnd+1; } else if (isdigit(*I)) { // Matching Constraint // Maximal munch numbers. std::string::const_iterator NumStart = I; while (I != E && isdigit(*I)) ++I; Codes.push_back(std::string(NumStart, I)); unsigned N = atoi(Codes.back().c_str()); // Check that this is a valid matching constraint! if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput|| Type != isInput) return true; // Invalid constraint number. // If Operand N already has a matching input, reject this. An output // can't be constrained to the same value as multiple inputs. if (ConstraintsSoFar[N].hasMatchingInput()) return true; // Note that operand #n has a matching input. ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size(); } else { // Single letter constraint. Codes.push_back(std::string(I, I+1)); ++I; } } return false; } std::vector InlineAsm::ParseConstraints(const std::string &Constraints) { std::vector Result; // Scan the constraints string. for (std::string::const_iterator I = Constraints.begin(), E = Constraints.end(); I != E; ) { ConstraintInfo Info; // Find the end of this constraint. std::string::const_iterator ConstraintEnd = std::find(I, E, ','); if (ConstraintEnd == I || // Empty constraint like ",," Info.Parse(std::string(I, ConstraintEnd), Result)) { Result.clear(); // Erroneous constraint? break; } Result.push_back(Info); // ConstraintEnd may be either the next comma or the end of the string. In // the former case, we skip the comma. I = ConstraintEnd; if (I != E) { ++I; if (I == E) { Result.clear(); break; } // don't allow "xyz," } } return Result; } /// Verify - Verify that the specified constraint string is reasonable for the /// specified function type, and otherwise validate the constraint string. bool InlineAsm::Verify(const FunctionType *Ty, const std::string &ConstStr) { if (Ty->isVarArg()) return false; std::vector Constraints = ParseConstraints(ConstStr); // Error parsing constraints. if (Constraints.empty() && !ConstStr.empty()) return false; unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0; unsigned NumIndirect = 0; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { switch (Constraints[i].Type) { case InlineAsm::isOutput: if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0) return false; // outputs before inputs and clobbers. if (!Constraints[i].isIndirect) { ++NumOutputs; break; } ++NumIndirect; // FALLTHROUGH for Indirect Outputs. case InlineAsm::isInput: if (NumClobbers) return false; // inputs before clobbers. ++NumInputs; break; case InlineAsm::isClobber: ++NumClobbers; break; } } switch (NumOutputs) { case 0: if (Ty->getReturnType() != Type::VoidTy) return false; break; case 1: if (isa(Ty->getReturnType())) return false; break; default: const StructType *STy = dyn_cast(Ty->getReturnType()); if (STy == 0 || STy->getNumElements() != NumOutputs) return false; break; } if (Ty->getNumParams() != NumInputs) return false; return true; }