SimplifyCFG.cpp   [plain text]


//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <functional>
#include <set>
#include <map>
using namespace llvm;

STATISTIC(NumSpeculations, "Number of speculative executed instructions");

/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
  if (SI1 == SI2) return false;  // Can't merge with self!
  
  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  
  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    if (SI1Succs.count(*I))
      for (BasicBlock::iterator BBI = (*I)->begin();
           isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB))
          return false;
      }
        
  return true;
}

/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block.  The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred) {
  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
  
  PHINode *PN;
  for (BasicBlock::iterator I = Succ->begin();
       (PN = dyn_cast<PHINode>(I)); ++I)
    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
}

/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  DOUT << "Looking to fold " << BB->getNameStart() << " into " 
       << Succ->getNameStart() << "\n";
  // Shortcut, if there is only a single predecessor it must be BB and merging
  // is always safe
  if (Succ->getSinglePredecessor()) return true;

  typedef SmallPtrSet<Instruction*, 16> InstrSet;
  InstrSet BBPHIs;

  // Make a list of all phi nodes in BB
  BasicBlock::iterator BBI = BB->begin();
  while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);

  // Make a list of the predecessors of BB
  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
  BlockSet BBPreds(pred_begin(BB), pred_end(BB));

  // Use that list to make another list of common predecessors of BB and Succ
  BlockSet CommonPreds;
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
        PI != PE; ++PI)
    if (BBPreds.count(*PI))
      CommonPreds.insert(*PI);

  // Shortcut, if there are no common predecessors, merging is always safe
  if (CommonPreds.empty())
    return true;
  
  // Look at all the phi nodes in Succ, to see if they present a conflict when
  // merging these blocks
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);

    // If the incoming value from BB is again a PHINode in
    // BB which has the same incoming value for *PI as PN does, we can
    // merge the phi nodes and then the blocks can still be merged
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    if (BBPN && BBPN->getParent() == BB) {
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        if (BBPN->getIncomingValueForBlock(*PI) 
              != PN->getIncomingValueForBlock(*PI)) {
          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
               << Succ->getNameStart() << " is conflicting with " 
               << BBPN->getNameStart() << " with regard to common predecessor "
               << (*PI)->getNameStart() << "\n";
          return false;
        }
      }
      // Remove this phinode from the list of phis in BB, since it has been
      // handled.
      BBPHIs.erase(BBPN);
    } else {
      Value* Val = PN->getIncomingValueForBlock(BB);
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        // See if the incoming value for the common predecessor is equal to the
        // one for BB, in which case this phi node will not prevent the merging
        // of the block.
        if (Val != PN->getIncomingValueForBlock(*PI)) {
          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
          << Succ->getNameStart() << " is conflicting with regard to common "
          << "predecessor " << (*PI)->getNameStart() << "\n";
          return false;
        }
      }
    }
  }

  // If there are any other phi nodes in BB that don't have a phi node in Succ
  // to merge with, they must be moved to Succ completely. However, for any
  // predecessors of Succ, branches will be added to the phi node that just
  // point to itself. So, for any common predecessors, this must not cause
  // conflicts.
  for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
        I != E; I++) {
    PHINode *PN = cast<PHINode>(*I);
    for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
          PI != PE; PI++)
      if (PN->getIncomingValueForBlock(*PI) != PN) {
        DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
             << BB->getNameStart() << " is conflicting with regard to common "
             << "predecessor " << (*PI)->getNameStart() << "\n";
        return false;
      }
  }

  return true;
}

/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
/// branch to Succ, and contains no instructions other than PHI nodes and the
/// branch.  If possible, eliminate BB.
static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
                                                    BasicBlock *Succ) {
  // Check to see if merging these blocks would cause conflicts for any of the
  // phi nodes in BB or Succ. If not, we can safely merge.
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
  
  DOUT << "Killing Trivial BB: \n" << *BB;
  
  if (isa<PHINode>(Succ->begin())) {
    // If there is more than one pred of succ, and there are PHI nodes in
    // the successor, then we need to add incoming edges for the PHI nodes
    //
    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    
    // Loop over all of the PHI nodes in the successor of BB.
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      Value *OldVal = PN->removeIncomingValue(BB, false);
      assert(OldVal && "No entry in PHI for Pred BB!");
      
      // If this incoming value is one of the PHI nodes in BB, the new entries
      // in the PHI node are the entries from the old PHI.
      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
        PHINode *OldValPN = cast<PHINode>(OldVal);
        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
          // Note that, since we are merging phi nodes and BB and Succ might
          // have common predecessors, we could end up with a phi node with
          // identical incoming branches. This will be cleaned up later (and
          // will trigger asserts if we try to clean it up now, without also
          // simplifying the corresponding conditional branch).
          PN->addIncoming(OldValPN->getIncomingValue(i),
                          OldValPN->getIncomingBlock(i));
      } else {
        // Add an incoming value for each of the new incoming values.
        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
          PN->addIncoming(OldVal, BBPreds[i]);
      }
    }
  }
  
  if (isa<PHINode>(&BB->front())) {
    SmallVector<BasicBlock*, 16>
    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
    
    // Move all PHI nodes in BB to Succ if they are alive, otherwise
    // delete them.
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      if (PN->use_empty()) {
        // Just remove the dead phi.  This happens if Succ's PHIs were the only
        // users of the PHI nodes.
        PN->eraseFromParent();
        continue;
      }
    
      // The instruction is alive, so this means that BB must dominate all
      // predecessors of Succ (Since all uses of the PN are after its
      // definition, so in Succ or a block dominated by Succ. If a predecessor
      // of Succ would not be dominated by BB, PN would violate the def before
      // use SSA demand). Therefore, we can simply move the phi node to the
      // next block.
      Succ->getInstList().splice(Succ->begin(),
                                 BB->getInstList(), BB->begin());
      
      // We need to add new entries for the PHI node to account for
      // predecessors of Succ that the PHI node does not take into
      // account.  At this point, since we know that BB dominated succ and all
      // of its predecessors, this means that we should any newly added
      // incoming edges should use the PHI node itself as the value for these
      // edges, because they are loop back edges.
      for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
        if (OldSuccPreds[i] != BB)
          PN->addIncoming(PN, OldSuccPreds[i]);
    }
  }
    
  // Everything that jumped to BB now goes to Succ.
  BB->replaceAllUsesWith(Succ);
  if (!Succ->hasName()) Succ->takeName(BB);
  BB->eraseFromParent();              // Delete the old basic block.
  return true;
}

/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition".  If so, return the boolean condition that determines
/// which entry into BB will be taken.  Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
///
static Value *GetIfCondition(BasicBlock *BB,
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
         "Function can only handle blocks with 2 predecessors!");
  BasicBlock *Pred1 = *pred_begin(BB);
  BasicBlock *Pred2 = *++pred_begin(BB);

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
      !isa<BranchInst>(Pred2->getTerminator()))
    return 0;
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return 0;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return 0;
    }

    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (++pred_begin(Pred2) != pred_end(Pred2))
      return 0;

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  if (pred_begin(Pred1) == pred_end(Pred1) ||
      ++pred_begin(Pred1) != pred_end(Pred1) ||
      pred_begin(Pred2) == pred_end(Pred2) ||
      ++pred_begin(Pred2) != pred_end(Pred2) ||
      *pred_begin(Pred1) != *pred_begin(Pred2))
    return 0;

  // Otherwise, if this is a conditional branch, then we can use it!
  BasicBlock *CommonPred = *pred_begin(Pred1);
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
    assert(BI->isConditional() && "Two successors but not conditional?");
    if (BI->getSuccessor(0) == Pred1) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else {
      IfTrue = Pred2;
      IfFalse = Pred1;
    }
    return BI->getCondition();
  }
  return 0;
}

/// findGlobalVariableBase - Recurse into a ConstantExpr to find the underlying
/// GlobalVariable, if there is one.
static GlobalVariable* findGlobalVariableBase(ConstantExpr* CE) {
  if (isa<GlobalVariable>(CE))
    return dyn_cast<GlobalVariable>(CE);
  if (CE->getOpcode()==Instruction::GetElementPtr ||
      CE->getOpcode()==Instruction::BitCast) {
    if (isa<GlobalVariable>(CE->getOperand(0)))
      return dyn_cast<GlobalVariable>(CE->getOperand(0));
    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(CE->getOperand(0)))
      return findGlobalVariableBase(CE2);
  }
  return NULL;
}

/// DominatesMergePoint - If we have a merge point of an "if condition" as
/// accepted above, return true if the specified value dominates the block.  We
/// don't handle the true generality of domination here, just a special case
/// which works well enough for us.
///
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
/// see if V (which must be an instruction) is cheap to compute and is
/// non-trapping.  If both are true, the instruction is inserted into the set
/// and true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                std::set<Instruction*> *AggressiveInsts) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    // Non-instructions all dominate instructions, but not all constantexprs
    // can be executed unconditionally.
    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
      if (C->canTrap())
        return false;
    return true;
  }
  BasicBlock *PBB = I->getParent();

  // We don't want to allow weird loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB) return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".
  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
      if (!AggressiveInsts) return false;
      // Okay, it looks like the instruction IS in the "condition".  Check to
      // see if its a cheap instruction to unconditionally compute, and if it
      // only uses stuff defined outside of the condition.  If so, hoist it out.
      switch (I->getOpcode()) {
      default: return false;  // Cannot hoist this out safely.
      case Instruction::Load: {
        // We can hoist loads that are non-volatile and obviously cannot trap.
        if (cast<LoadInst>(I)->isVolatile())
          return false;
        // FIXME: A computation of a constant can trap!
        if (!isa<AllocaInst>(I->getOperand(0)) &&
            !isa<Constant>(I->getOperand(0)))
          return false;
        // External weak globals may have address 0, so we can't load them.
        GlobalVariable* GV = dyn_cast<GlobalVariable>(I->getOperand(0));
        if (GV && GV->hasExternalWeakLinkage())
          return false;
        // The global may be buried within a ConstantExpr.
        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0)))
          GV = findGlobalVariableBase(CE);
        if (GV && GV->hasExternalWeakLinkage())
          return false;

        // Finally, we have to check to make sure there are no instructions
        // before the load in its basic block, as we are going to hoist the loop
        // out to its predecessor.
        BasicBlock::iterator IP = PBB->begin();
        while (isa<DbgInfoIntrinsic>(IP))
          IP++;
        if (IP != BasicBlock::iterator(I))
          return false;
        break;
      }
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::ICmp:
      case Instruction::FCmp:
        if (I->getOperand(0)->getType()->isFPOrFPVector())
          return false;  // FP arithmetic might trap.
        break;   // These are all cheap and non-trapping instructions.
      }

      // Okay, we can only really hoist these out if their operands are not
      // defined in the conditional region.
      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
        if (!DominatesMergePoint(*i, BB, 0))
          return false;
      // Okay, it's safe to do this!  Remember this instruction.
      AggressiveInsts->insert(I);
    }

  return true;
}

/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
/// icmp_eq instructions that compare a value against a constant, return the
/// value being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Inst->getOpcode() == Instruction::ICmp &&
        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::Or) {
      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  }
  return 0;
}

/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
/// setne instructions that compare a value against a constant, return the value
/// being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Inst->getOpcode() == Instruction::ICmp &&
               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::And) {
      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  }
  return 0;
}

/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
/// bunch of comparisons of one value against constants, return the value and
/// the constants being compared.
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
                                   std::vector<ConstantInt*> &Values) {
  if (Cond->getOpcode() == Instruction::Or) {
    CompVal = GatherConstantSetEQs(Cond, Values);

    // Return true to indicate that the condition is true if the CompVal is
    // equal to one of the constants.
    return true;
  } else if (Cond->getOpcode() == Instruction::And) {
    CompVal = GatherConstantSetNEs(Cond, Values);

    // Return false to indicate that the condition is false if the CompVal is
    // equal to one of the constants.
    return false;
  }
  return false;
}

static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
  Instruction* Cond = 0;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cond = dyn_cast<Instruction>(SI->getCondition());
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isConditional())
      Cond = dyn_cast<Instruction>(BI->getCondition());
  }

  TI->eraseFromParent();
  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
}

/// isValueEqualityComparison - Return true if the specified terminator checks
/// to see if a value is equal to constant integer value.
static Value *isValueEqualityComparison(TerminatorInst *TI) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
                                               pred_end(SI->getParent())) > 128)
      return 0;

    return SI->getCondition();
  }
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
            isa<ConstantInt>(ICI->getOperand(1)))
          return ICI->getOperand(0);
  return 0;
}

/// GetValueEqualityComparisonCases - Given a value comparison instruction,
/// decode all of the 'cases' that it represents and return the 'default' block.
static BasicBlock *
GetValueEqualityComparisonCases(TerminatorInst *TI,
                                std::vector<std::pair<ConstantInt*,
                                                      BasicBlock*> > &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
                                 BI->getSuccessor(ICI->getPredicate() ==
                                                  ICmpInst::ICMP_NE)));
  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}


/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
/// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    if (Cases[i].second == BB) {
      Cases.erase(Cases.begin()+i);
      --i; --e;
    }
}

/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
/// well.
static bool
ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;

  // Make V1 be smaller than V2.
  if (V1->size() > V2->size())
    std::swap(V1, V2);

  if (V1->size() == 0) return false;
  if (V1->size() == 1) {
    // Just scan V2.
    ConstantInt *TheVal = (*V1)[0].first;
    for (unsigned i = 0, e = V2->size(); i != e; ++i)
      if (TheVal == (*V2)[i].first)
        return true;
  }

  // Otherwise, just sort both lists and compare element by element.
  std::sort(V1->begin(), V1->end());
  std::sort(V2->begin(), V2->end());
  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
  while (i1 != e1 && i2 != e2) {
    if ((*V1)[i1].first == (*V2)[i2].first)
      return true;
    if ((*V1)[i1].first < (*V2)[i2].first)
      ++i1;
    else
      ++i2;
  }
  return false;
}

/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
/// terminator instruction and its block is known to only have a single
/// predecessor block, check to see if that predecessor is also a value
/// comparison with the same value, and if that comparison determines the
/// outcome of this comparison.  If so, simplify TI.  This does a very limited
/// form of jump threading.
static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
                                                          BasicBlock *Pred) {
  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
  if (!PredVal) return false;  // Not a value comparison in predecessor.

  Value *ThisVal = isValueEqualityComparison(TI);
  assert(ThisVal && "This isn't a value comparison!!");
  if (ThisVal != PredVal) return false;  // Different predicates.

  // Find out information about when control will move from Pred to TI's block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
                                                        PredCases);
  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.

  // Find information about how control leaves this block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.

  // If TI's block is the default block from Pred's comparison, potentially
  // simplify TI based on this knowledge.
  if (PredDef == TI->getParent()) {
    // If we are here, we know that the value is none of those cases listed in
    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    // can simplify TI.
    if (ValuesOverlap(PredCases, ThisCases)) {
      if (isa<BranchInst>(TI)) {
        // Okay, one of the successors of this condbr is dead.  Convert it to a
        // uncond br.
        assert(ThisCases.size() == 1 && "Branch can only have one case!");
        // Insert the new branch.
        Instruction *NI = BranchInst::Create(ThisDef, TI);

        // Remove PHI node entries for the dead edge.
        ThisCases[0].second->removePredecessor(TI->getParent());

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";

        EraseTerminatorInstAndDCECond(TI);
        return true;

      } else {
        SwitchInst *SI = cast<SwitchInst>(TI);
        // Okay, TI has cases that are statically dead, prune them away.
        SmallPtrSet<Constant*, 16> DeadCases;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          DeadCases.insert(PredCases[i].first);

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI;

        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
          if (DeadCases.count(SI->getCaseValue(i))) {
            SI->getSuccessor(i)->removePredecessor(TI->getParent());
            SI->removeCase(i);
          }

        DOUT << "Leaving: " << *TI << "\n";
        return true;
      }
    }

  } else {
    // Otherwise, TI's block must correspond to some matched value.  Find out
    // which value (or set of values) this is.
    ConstantInt *TIV = 0;
    BasicBlock *TIBB = TI->getParent();
    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
      if (PredCases[i].second == TIBB) {
        if (TIV == 0)
          TIV = PredCases[i].first;
        else
          return false;  // Cannot handle multiple values coming to this block.
      }
    assert(TIV && "No edge from pred to succ?");

    // Okay, we found the one constant that our value can be if we get into TI's
    // BB.  Find out which successor will unconditionally be branched to.
    BasicBlock *TheRealDest = 0;
    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
      if (ThisCases[i].first == TIV) {
        TheRealDest = ThisCases[i].second;
        break;
      }

    // If not handled by any explicit cases, it is handled by the default case.
    if (TheRealDest == 0) TheRealDest = ThisDef;

    // Remove PHI node entries for dead edges.
    BasicBlock *CheckEdge = TheRealDest;
    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
      if (*SI != CheckEdge)
        (*SI)->removePredecessor(TIBB);
      else
        CheckEdge = 0;

    // Insert the new branch.
    Instruction *NI = BranchInst::Create(TheRealDest, TI);

    DOUT << "Threading pred instr: " << *Pred->getTerminator()
         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";

    EraseTerminatorInstAndDCECond(TI);
    return true;
  }
  return false;
}

namespace {
  /// ConstantIntOrdering - This class implements a stable ordering of constant
  /// integers that does not depend on their address.  This is important for
  /// applications that sort ConstantInt's to ensure uniqueness.
  struct ConstantIntOrdering {
    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
      return LHS->getValue().ult(RHS->getValue());
    }
  };
}

/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
/// equality comparison instruction (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
/// on the same value.  If so, and if safe to do so, fold them together.
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI);  // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.back();
    Preds.pop_back();

    // See if the predecessor is a comparison with the same value.
    TerminatorInst *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal

    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      SmallVector<BasicBlock*, 8> NewSuccessors;

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second != BB)
            PTIHandled.insert(PredCases[i].first);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].first) &&
              BBCases[i].second != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
          }

      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second == BB) {
            PTIHandled.insert(PredCases[i].first);
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].first)) {
            // If this is one we are capable of getting...
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 
                                    PTIHandled.begin(),
               E = PTIHandled.end(); I != E; ++I) {
          PredCases.push_back(std::make_pair(*I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
                                             PredCases.size(), PTI);
      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
        NewSI->addCase(PredCases[i].first, PredCases[i].second);

      EraseTerminatorInstAndDCECond(PTI);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = 0;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (InfLoopBlock == 0) {
            // Insert it at the end of the function, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
            BranchInst::Create(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }

      Changed = true;
    }
  }
  return Changed;
}

// isSafeToHoistInvoke - If we would need to insert a select that uses the
// value of this invoke (comments in HoistThenElseCodeToIf explain why we
// would need to do this), we can't hoist the invoke, as there is nowhere
// to put the select in this case.
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
                                Instruction *I1, Instruction *I2) {
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = SI->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
        return false;
      }
    }
  }
  return true;
}

/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block.  The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination

  BasicBlock::iterator BB1_Itr = BB1->begin();
  BasicBlock::iterator BB2_Itr = BB2->begin();

  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
  while (isa<DbgInfoIntrinsic>(I1))
    I1 = BB1_Itr++;
  while (isa<DbgInfoIntrinsic>(I2))
    I2 = BB2_Itr++;
  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
      !I1->isIdenticalTo(I2) ||
      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
    return false;

  // If we get here, we can hoist at least one instruction.
  BasicBlock *BIParent = BI->getParent();

  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (isa<TerminatorInst>(I1))
      goto HoistTerminator;

    // For a normal instruction, we just move one to right before the branch,
    // then replace all uses of the other with the first.  Finally, we remove
    // the now redundant second instruction.
    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    if (!I2->use_empty())
      I2->replaceAllUsesWith(I1);
    BB2->getInstList().erase(I2);

    I1 = BB1_Itr++;
    while (isa<DbgInfoIntrinsic>(I1))
      I1 = BB1_Itr++;
    I2 = BB2_Itr++;
    while (isa<DbgInfoIntrinsic>(I2))
      I2 = BB2_Itr++;
  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));

  return true;

HoistTerminator:
  // It may not be possible to hoist an invoke.
  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    return true;

  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI, NT);
  if (NT->getType() != Type::VoidTy) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->takeName(I1);
  }

  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = SI->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V) {
        // These values do not agree.  Insert a select instruction before NT
        // that determines the right value.
        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
        if (SI == 0)
          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
                                  BB1V->getName()+"."+BB2V->getName(), NT);
        // Make the PHI node use the select for all incoming values for BB1/BB2
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
            PN->setIncomingValue(i, SI);
      }
    }
  }

  // Update any PHI nodes in our new successors.
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    AddPredecessorToBlock(*SI, BIParent, BB1);

  EraseTerminatorInstAndDCECond(BI);
  return true;
}

/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
/// (for now, restricted to a single instruction that's side effect free) from
/// the BB1 into the branch block to speculatively execute it.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
  // Only speculatively execution a single instruction (not counting the
  // terminator) for now.
  Instruction *HInst = NULL;
  Instruction *Term = BB1->getTerminator();
  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
       BBI != BBE; ++BBI) {
    Instruction *I = BBI;
    // Skip debug info.
    if (isa<DbgInfoIntrinsic>(I))   continue;
    if (I == Term)  break;

    if (!HInst)
      HInst = I;
    else
      return false;
  }
  if (!HInst)
    return false;

  // Be conservative for now. FP select instruction can often be expensive.
  Value *BrCond = BI->getCondition();
  if (isa<Instruction>(BrCond) &&
      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
    return false;

  // If BB1 is actually on the false edge of the conditional branch, remember
  // to swap the select operands later.
  bool Invert = false;
  if (BB1 != BI->getSuccessor(0)) {
    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
    Invert = true;
  }

  // Turn
  // BB:
  //     %t1 = icmp
  //     br i1 %t1, label %BB1, label %BB2
  // BB1:
  //     %t3 = add %t2, c
  //     br label BB2
  // BB2:
  // =>
  // BB:
  //     %t1 = icmp
  //     %t4 = add %t2, c
  //     %t3 = select i1 %t1, %t2, %t3
  switch (HInst->getOpcode()) {
  default: return false;  // Not safe / profitable to hoist.
  case Instruction::Add:
  case Instruction::Sub:
    // FP arithmetic might trap. Not worth doing for vector ops.
    if (HInst->getType()->isFloatingPoint() 
        || isa<VectorType>(HInst->getType()))
      return false;
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    // Don't mess with vector operations.
    if (isa<VectorType>(HInst->getType()))
      return false;
    break;   // These are all cheap and non-trapping instructions.
  }
  
  // If the instruction is obviously dead, don't try to predicate it.
  if (HInst->use_empty()) {
    HInst->eraseFromParent();
    return true;
  }

  // Can we speculatively execute the instruction? And what is the value 
  // if the condition is false? Consider the phi uses, if the incoming value
  // from the "if" block are all the same V, then V is the value of the
  // select if the condition is false.
  BasicBlock *BIParent = BI->getParent();
  SmallVector<PHINode*, 4> PHIUses;
  Value *FalseV = NULL;
  
  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
       UI != E; ++UI) {
    // Ignore any user that is not a PHI node in BB2.  These can only occur in
    // unreachable blocks, because they would not be dominated by the instr.
    PHINode *PN = dyn_cast<PHINode>(UI);
    if (!PN || PN->getParent() != BB2)
      return false;
    PHIUses.push_back(PN);
    
    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
    if (!FalseV)
      FalseV = PHIV;
    else if (FalseV != PHIV)
      return false;  // Inconsistent value when condition is false.
  }
  
  assert(FalseV && "Must have at least one user, and it must be a PHI");

  // Do not hoist the instruction if any of its operands are defined but not
  // used in this BB. The transformation will prevent the operand from
  // being sunk into the use block.
  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 
       i != e; ++i) {
    Instruction *OpI = dyn_cast<Instruction>(*i);
    if (OpI && OpI->getParent() == BIParent &&
        !OpI->isUsedInBasicBlock(BIParent))
      return false;
  }

  // If we get here, we can hoist the instruction. Try to place it
  // before the icmp instruction preceding the conditional branch.
  BasicBlock::iterator InsertPos = BI;
  if (InsertPos != BIParent->begin())
    --InsertPos;
  // Skip debug info between condition and branch.
  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
    --InsertPos;
  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
    SmallPtrSet<Instruction *, 4> BB1Insns;
    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 
        BB1I != BB1E; ++BB1I) 
      BB1Insns.insert(BB1I);
    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
        UI != UE; ++UI) {
      Instruction *Use = cast<Instruction>(*UI);
      if (BB1Insns.count(Use)) {
        // If BrCond uses the instruction that place it just before
        // branch instruction.
        InsertPos = BI;
        break;
      }
    }
  } else
    InsertPos = BI;
  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);

  // Create a select whose true value is the speculatively executed value and
  // false value is the previously determined FalseV.
  SelectInst *SI;
  if (Invert)
    SI = SelectInst::Create(BrCond, FalseV, HInst,
                            FalseV->getName() + "." + HInst->getName(), BI);
  else
    SI = SelectInst::Create(BrCond, HInst, FalseV,
                            HInst->getName() + "." + FalseV->getName(), BI);

  // Make the PHI node use the select for all incoming values for "then" and
  // "if" blocks.
  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
    PHINode *PN = PHIUses[i];
    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
      if (PN->getIncomingBlock(j) == BB1 ||
          PN->getIncomingBlock(j) == BIParent)
        PN->setIncomingValue(j, SI);
  }

  ++NumSpeculations;
  return true;
}

/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
/// across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  unsigned Size = 0;
  
  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
    if (isa<DbgInfoIntrinsic>(BBI))
      continue;
    if (Size > 10) return false;  // Don't clone large BB's.
    ++Size;
    
    // We can only support instructions that do not define values that are
    // live outside of the current basic block.
    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
         UI != E; ++UI) {
      Instruction *U = cast<Instruction>(*UI);
      if (U->getParent() != BB || isa<PHINode>(U)) return false;
    }
    
    // Looks ok, continue checking.
  }

  return true;
}

/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI) {
  BasicBlock *BB = BI->getParent();
  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
  // NOTE: we currently cannot transform this case if the PHI node is used
  // outside of the block.
  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
    return false;
  
  // Degenerate case of a single entry PHI.
  if (PN->getNumIncomingValues() == 1) {
    FoldSingleEntryPHINodes(PN->getParent());
    return true;    
  }

  // Now we know that this block has multiple preds and two succs.
  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
  
  // Okay, this is a simple enough basic block.  See if any phi values are
  // constants.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    ConstantInt *CB;
    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
        CB->getType() == Type::Int1Ty) {
      // Okay, we now know that all edges from PredBB should be revectored to
      // branch to RealDest.
      BasicBlock *PredBB = PN->getIncomingBlock(i);
      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
      
      if (RealDest == BB) continue;  // Skip self loops.
      
      // The dest block might have PHI nodes, other predecessors and other
      // difficult cases.  Instead of being smart about this, just insert a new
      // block that jumps to the destination block, effectively splitting
      // the edge we are about to create.
      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
                                              RealDest->getParent(), RealDest);
      BranchInst::Create(RealDest, EdgeBB);
      PHINode *PN;
      for (BasicBlock::iterator BBI = RealDest->begin();
           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
        Value *V = PN->getIncomingValueForBlock(BB);
        PN->addIncoming(V, EdgeBB);
      }

      // BB may have instructions that are being threaded over.  Clone these
      // instructions into EdgeBB.  We know that there will be no uses of the
      // cloned instructions outside of EdgeBB.
      BasicBlock::iterator InsertPt = EdgeBB->begin();
      std::map<Value*, Value*> TranslateMap;  // Track translated values.
      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
        } else {
          // Clone the instruction.
          Instruction *N = BBI->clone();
          if (BBI->hasName()) N->setName(BBI->getName()+".c");
          
          // Update operands due to translation.
          for (User::op_iterator i = N->op_begin(), e = N->op_end();
               i != e; ++i) {
            std::map<Value*, Value*>::iterator PI =
              TranslateMap.find(*i);
            if (PI != TranslateMap.end())
              *i = PI->second;
          }
          
          // Check for trivial simplification.
          if (Constant *C = ConstantFoldInstruction(N)) {
            TranslateMap[BBI] = C;
            delete N;   // Constant folded away, don't need actual inst
          } else {
            // Insert the new instruction into its new home.
            EdgeBB->getInstList().insert(InsertPt, N);
            if (!BBI->use_empty())
              TranslateMap[BBI] = N;
          }
        }
      }

      // Loop over all of the edges from PredBB to BB, changing them to branch
      // to EdgeBB instead.
      TerminatorInst *PredBBTI = PredBB->getTerminator();
      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
        if (PredBBTI->getSuccessor(i) == BB) {
          BB->removePredecessor(PredBB);
          PredBBTI->setSuccessor(i, EdgeBB);
        }
      
      // Recurse, simplifying any other constants.
      return FoldCondBranchOnPHI(BI) | true;
    }
  }

  return false;
}

/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN) {
  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
  // statement", which has a very simple dominance structure.  Basically, we
  // are trying to find the condition that is being branched on, which
  // subsequently causes this merge to happen.  We really want control
  // dependence information for this check, but simplifycfg can't keep it up
  // to date, and this catches most of the cases we care about anyway.
  //
  BasicBlock *BB = PN->getParent();
  BasicBlock *IfTrue, *IfFalse;
  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
  if (!IfCond) return false;
  
  // Okay, we found that we can merge this two-entry phi node into a select.
  // Doing so would require us to fold *all* two entry phi nodes in this block.
  // At some point this becomes non-profitable (particularly if the target
  // doesn't support cmov's).  Only do this transformation if there are two or
  // fewer PHI nodes in this block.
  unsigned NumPhis = 0;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
    if (NumPhis > 2)
      return false;
  
  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
  
  // Loop over the PHI's seeing if we can promote them all to select
  // instructions.  While we are at it, keep track of the instructions
  // that need to be moved to the dominating block.
  std::set<Instruction*> AggressiveInsts;
  
  BasicBlock::iterator AfterPHIIt = BB->begin();
  while (isa<PHINode>(AfterPHIIt)) {
    PHINode *PN = cast<PHINode>(AfterPHIIt++);
    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
      if (PN->getIncomingValue(0) != PN)
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
      else
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
                                    &AggressiveInsts) ||
               !DominatesMergePoint(PN->getIncomingValue(1), BB,
                                    &AggressiveInsts)) {
      return false;
    }
  }
  
  // If we all PHI nodes are promotable, check to make sure that all
  // instructions in the predecessor blocks can be promoted as well.  If
  // not, we won't be able to get rid of the control flow, so it's not
  // worth promoting to select instructions.
  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
  PN = cast<PHINode>(BB->begin());
  BasicBlock *Pred = PN->getIncomingBlock(0);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock1 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
    
  Pred = PN->getIncomingBlock(1);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock2 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
      
  // If we can still promote the PHI nodes after this gauntlet of tests,
  // do all of the PHI's now.

  // Move all 'aggressive' instructions, which are defined in the
  // conditional parts of the if's up to the dominating block.
  if (IfBlock1) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock1->getInstList(),
                                   IfBlock1->begin(),
                                   IfBlock1->getTerminator());
  }
  if (IfBlock2) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock2->getInstList(),
                                   IfBlock2->begin(),
                                   IfBlock2->getTerminator());
  }
  
  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    // Change the PHI node into a select instruction.
    Value *TrueVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
    Value *FalseVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
    
    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
    PN->replaceAllUsesWith(NV);
    NV->takeName(PN);
    
    BB->getInstList().erase(PN);
  }
  return true;
}

/// isTerminatorFirstRelevantInsn - Return true if Term is very first 
/// instruction ignoring Phi nodes and dbg intrinsics.
static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
  BasicBlock::iterator BBI = Term;
  while (BBI != BB->begin()) {
    --BBI;
    if (!isa<DbgInfoIntrinsic>(BBI))
      break;
  }

  if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
    return true;
  return false;
}

/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
/// to two returning blocks, try to merge them together into one return,
/// introducing a select if the return values disagree.
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
  assert(BI->isConditional() && "Must be a conditional branch");
  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
  
  // Check to ensure both blocks are empty (just a return) or optionally empty
  // with PHI nodes.  If there are other instructions, merging would cause extra
  // computation on one path or the other.
  if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
    return false;
  if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
    return false;

  // Okay, we found a branch that is going to two return nodes.  If
  // there is no return value for this function, just change the
  // branch into a return.
  if (FalseRet->getNumOperands() == 0) {
    TrueSucc->removePredecessor(BI->getParent());
    FalseSucc->removePredecessor(BI->getParent());
    ReturnInst::Create(0, BI);
    EraseTerminatorInstAndDCECond(BI);
    return true;
  }
    
  // Otherwise, figure out what the true and false return values are
  // so we can insert a new select instruction.
  Value *TrueValue = TrueRet->getReturnValue();
  Value *FalseValue = FalseRet->getReturnValue();
  
  // Unwrap any PHI nodes in the return blocks.
  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
    if (TVPN->getParent() == TrueSucc)
      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
    if (FVPN->getParent() == FalseSucc)
      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
  
  // In order for this transformation to be safe, we must be able to
  // unconditionally execute both operands to the return.  This is
  // normally the case, but we could have a potentially-trapping
  // constant expression that prevents this transformation from being
  // safe.
  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
    if (TCV->canTrap())
      return false;
  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
    if (FCV->canTrap())
      return false;
  
  // Okay, we collected all the mapped values and checked them for sanity, and
  // defined to really do this transformation.  First, update the CFG.
  TrueSucc->removePredecessor(BI->getParent());
  FalseSucc->removePredecessor(BI->getParent());
  
  // Insert select instructions where needed.
  Value *BrCond = BI->getCondition();
  if (TrueValue) {
    // Insert a select if the results differ.
    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
    } else if (isa<UndefValue>(TrueValue)) {
      TrueValue = FalseValue;
    } else {
      TrueValue = SelectInst::Create(BrCond, TrueValue,
                                     FalseValue, "retval", BI);
    }
  }

  Value *RI = !TrueValue ?
              ReturnInst::Create(BI) :
              ReturnInst::Create(TrueValue, BI);
      
  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
       << "\n  " << *BI << "NewRet = " << *RI
       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
      
  EraseTerminatorInstAndDCECond(BI);

  return true;
}

/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
/// setcc into the predecessor and use logical operations to pick the right
/// destination.
static bool FoldBranchToCommonDest(BranchInst *BI) {
  BasicBlock *BB = BI->getParent();
  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
  if (Cond == 0) return false;

  
  // Only allow this if the condition is a simple instruction that can be
  // executed unconditionally.  It must be in the same block as the branch, and
  // must be at the front of the block.
  BasicBlock::iterator FrontIt = BB->front();
  // Ignore dbg intrinsics.
  while(isa<DbgInfoIntrinsic>(FrontIt))
    ++FrontIt;
  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
      Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
    return false;
  }
  
  // Make sure the instruction after the condition is the cond branch.
  BasicBlock::iterator CondIt = Cond; ++CondIt;
  // Ingore dbg intrinsics.
  while(isa<DbgInfoIntrinsic>(CondIt))
    ++CondIt;
  if (&*CondIt != BI) {
    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
    return false;
  }

  // Cond is known to be a compare or binary operator.  Check to make sure that
  // neither operand is a potentially-trapping constant expression.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
    if (CE->canTrap())
      return false;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
    if (CE->canTrap())
      return false;
  
  
  // Finally, don't infinitely unroll conditional loops.
  BasicBlock *TrueDest  = BI->getSuccessor(0);
  BasicBlock *FalseDest = BI->getSuccessor(1);
  if (TrueDest == BB || FalseDest == BB)
    return false;
  
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *PredBlock = *PI;
    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
    
    // Check that we have two conditional branches.  If there is a PHI node in
    // the common successor, verify that the same value flows in from both
    // blocks.
    if (PBI == 0 || PBI->isUnconditional() ||
        !SafeToMergeTerminators(BI, PBI))
      continue;
    
    Instruction::BinaryOps Opc;
    bool InvertPredCond = false;

    if (PBI->getSuccessor(0) == TrueDest)
      Opc = Instruction::Or;
    else if (PBI->getSuccessor(1) == FalseDest)
      Opc = Instruction::And;
    else if (PBI->getSuccessor(0) == FalseDest)
      Opc = Instruction::And, InvertPredCond = true;
    else if (PBI->getSuccessor(1) == TrueDest)
      Opc = Instruction::Or, InvertPredCond = true;
    else
      continue;

    DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
    
    // If we need to invert the condition in the pred block to match, do so now.
    if (InvertPredCond) {
      Value *NewCond =
        BinaryOperator::CreateNot(PBI->getCondition(),
                                  PBI->getCondition()->getName()+".not", PBI);
      PBI->setCondition(NewCond);
      BasicBlock *OldTrue = PBI->getSuccessor(0);
      BasicBlock *OldFalse = PBI->getSuccessor(1);
      PBI->setSuccessor(0, OldFalse);
      PBI->setSuccessor(1, OldTrue);
    }
    
    // Clone Cond into the predecessor basic block, and or/and the
    // two conditions together.
    Instruction *New = Cond->clone();
    PredBlock->getInstList().insert(PBI, New);
    New->takeName(Cond);
    Cond->setName(New->getName()+".old");
    
    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
                                            New, "or.cond", PBI);
    PBI->setCondition(NewCond);
    if (PBI->getSuccessor(0) == BB) {
      AddPredecessorToBlock(TrueDest, PredBlock, BB);
      PBI->setSuccessor(0, TrueDest);
    }
    if (PBI->getSuccessor(1) == BB) {
      AddPredecessorToBlock(FalseDest, PredBlock, BB);
      PBI->setSuccessor(1, FalseDest);
    }
    return true;
  }
  return false;
}

/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
/// predecessor of another block, this function tries to simplify it.  We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
  assert(PBI->isConditional() && BI->isConditional());
  BasicBlock *BB = BI->getParent();
  
  // If this block ends with a branch instruction, and if there is a
  // predecessor that ends on a branch of the same condition, make 
  // this conditional branch redundant.
  if (PBI->getCondition() == BI->getCondition() &&
      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
    // Okay, the outcome of this conditional branch is statically
    // knowable.  If this block had a single pred, handle specially.
    if (BB->getSinglePredecessor()) {
      // Turn this into a branch on constant.
      bool CondIsTrue = PBI->getSuccessor(0) == BB;
      BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
      return true;  // Nuke the branch on constant.
    }
    
    // Otherwise, if there are multiple predecessors, insert a PHI that merges
    // in the constant and simplify the block result.  Subsequent passes of
    // simplifycfg will thread the block.
    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
      PHINode *NewPN = PHINode::Create(Type::Int1Ty,
                                       BI->getCondition()->getName() + ".pr",
                                       BB->begin());
      // Okay, we're going to insert the PHI node.  Since PBI is not the only
      // predecessor, compute the PHI'd conditional value for all of the preds.
      // Any predecessor where the condition is not computable we keep symbolic.
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
            PBI != BI && PBI->isConditional() &&
            PBI->getCondition() == BI->getCondition() &&
            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
          bool CondIsTrue = PBI->getSuccessor(0) == BB;
          NewPN->addIncoming(ConstantInt::get(Type::Int1Ty, 
                                              CondIsTrue), *PI);
        } else {
          NewPN->addIncoming(BI->getCondition(), *PI);
        }
      
      BI->setCondition(NewPN);
      return true;
    }
  }
  
  // If this is a conditional branch in an empty block, and if any
  // predecessors is a conditional branch to one of our destinations,
  // fold the conditions into logical ops and one cond br.
  BasicBlock::iterator BBI = BB->begin();
  // Ignore dbg intrinsics.
  while (isa<DbgInfoIntrinsic>(BBI))
    ++BBI;
  if (&*BBI != BI)
    return false;

  
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
    if (CE->canTrap())
      return false;
  
  int PBIOp, BIOp;
  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
    PBIOp = BIOp = 0;
  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
    PBIOp = 0, BIOp = 1;
  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
    PBIOp = 1, BIOp = 0;
  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
    PBIOp = BIOp = 1;
  else
    return false;
    
  // Check to make sure that the other destination of this branch
  // isn't BB itself.  If so, this is an infinite loop that will
  // keep getting unwound.
  if (PBI->getSuccessor(PBIOp) == BB)
    return false;
    
  // Do not perform this transformation if it would require 
  // insertion of a large number of select instructions. For targets
  // without predication/cmovs, this is a big pessimization.
  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
      
  unsigned NumPhis = 0;
  for (BasicBlock::iterator II = CommonDest->begin();
       isa<PHINode>(II); ++II, ++NumPhis)
    if (NumPhis > 2) // Disable this xform.
      return false;
    
  // Finally, if everything is ok, fold the branches to logical ops.
  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
  
  DOUT << "FOLDING BRs:" << *PBI->getParent()
       << "AND: " << *BI->getParent();
  
  
  // If OtherDest *is* BB, then BB is a basic block with a single conditional
  // branch in it, where one edge (OtherDest) goes back to itself but the other
  // exits.  We don't *know* that the program avoids the infinite loop
  // (even though that seems likely).  If we do this xform naively, we'll end up
  // recursively unpeeling the loop.  Since we know that (after the xform is
  // done) that the block *is* infinite if reached, we just make it an obviously
  // infinite loop with no cond branch.
  if (OtherDest == BB) {
    // Insert it at the end of the function, because it's either code,
    // or it won't matter if it's hot. :)
    BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
    BranchInst::Create(InfLoopBlock, InfLoopBlock);
    OtherDest = InfLoopBlock;
  }  
  
  DOUT << *PBI->getParent()->getParent();
  
  // BI may have other predecessors.  Because of this, we leave
  // it alone, but modify PBI.
  
  // Make sure we get to CommonDest on True&True directions.
  Value *PBICond = PBI->getCondition();
  if (PBIOp)
    PBICond = BinaryOperator::CreateNot(PBICond,
                                        PBICond->getName()+".not",
                                        PBI);
  Value *BICond = BI->getCondition();
  if (BIOp)
    BICond = BinaryOperator::CreateNot(BICond,
                                       BICond->getName()+".not",
                                       PBI);
  // Merge the conditions.
  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
  
  // Modify PBI to branch on the new condition to the new dests.
  PBI->setCondition(Cond);
  PBI->setSuccessor(0, CommonDest);
  PBI->setSuccessor(1, OtherDest);
  
  // OtherDest may have phi nodes.  If so, add an entry from PBI's
  // block that are identical to the entries for BI's block.
  PHINode *PN;
  for (BasicBlock::iterator II = OtherDest->begin();
       (PN = dyn_cast<PHINode>(II)); ++II) {
    Value *V = PN->getIncomingValueForBlock(BB);
    PN->addIncoming(V, PBI->getParent());
  }
  
  // We know that the CommonDest already had an edge from PBI to
  // it.  If it has PHIs though, the PHIs may have different
  // entries for BB and PBI's BB.  If so, insert a select to make
  // them agree.
  for (BasicBlock::iterator II = CommonDest->begin();
       (PN = dyn_cast<PHINode>(II)); ++II) {
    Value *BIV = PN->getIncomingValueForBlock(BB);
    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN->getIncomingValue(PBBIdx);
    if (BIV != PBIV) {
      // Insert a select in PBI to pick the right value.
      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
                                     PBIV->getName()+".mux", PBI);
      PN->setIncomingValue(PBBIdx, NV);
    }
  }
  
  DOUT << "INTO: " << *PBI->getParent();
  
  DOUT << *PBI->getParent()->getParent();
  
  // This basic block is probably dead.  We know it has at least
  // one fewer predecessor.
  return true;
}


/// SimplifyCFG - This function is used to do simplification of a CFG.  For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG.  It returns true if a modification was made.
///
/// WARNING:  The entry node of a function may not be simplified.
///
bool llvm::SimplifyCFG(BasicBlock *BB) {
  bool Changed = false;
  Function *M = BB->getParent();

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
  assert(&BB->getParent()->getEntryBlock() != BB &&
         "Can't Simplify entry block!");

  // Remove basic blocks that have no predecessors... or that just have themself
  // as a predecessor.  These are unreachable.
  if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
    DOUT << "Removing BB: \n" << *BB;
    DeleteDeadBlock(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB);

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2)
      Changed |= FoldTwoEntryPHINode(PN); 

  // If this is a returning block with only PHI nodes in it, fold the return
  // instruction into any unconditional branch predecessors.
  //
  // If any predecessor is a conditional branch that just selects among
  // different return values, fold the replace the branch/return with a select
  // and return.
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
      // Find predecessors that end with branches.
      SmallVector<BasicBlock*, 8> UncondBranchPreds;
      SmallVector<BranchInst*, 8> CondBranchPreds;
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        TerminatorInst *PTI = (*PI)->getTerminator();
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
          if (BI->isUnconditional())
            UncondBranchPreds.push_back(*PI);
          else
            CondBranchPreds.push_back(BI);
        }
      }

      // If we found some, do the transformation!
      if (!UncondBranchPreds.empty()) {
        while (!UncondBranchPreds.empty()) {
          BasicBlock *Pred = UncondBranchPreds.back();
          DOUT << "FOLDING: " << *BB
               << "INTO UNCOND BRANCH PRED: " << *Pred;
          UncondBranchPreds.pop_back();
          Instruction *UncondBranch = Pred->getTerminator();
          // Clone the return and add it to the end of the predecessor.
          Instruction *NewRet = RI->clone();
          Pred->getInstList().push_back(NewRet);

          BasicBlock::iterator BBI = RI;
          if (BBI != BB->begin()) {
            // Move region end info into the predecessor.
            if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
              DREI->moveBefore(NewRet);
          }

          // If the return instruction returns a value, and if the value was a
          // PHI node in "BB", propagate the right value into the return.
          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
               i != e; ++i)
            if (PHINode *PN = dyn_cast<PHINode>(*i))
              if (PN->getParent() == BB)
                *i = PN->getIncomingValueForBlock(Pred);
          
          // Update any PHI nodes in the returning block to realize that we no
          // longer branch to them.
          BB->removePredecessor(Pred);
          Pred->getInstList().erase(UncondBranch);
        }

        // If we eliminated all predecessors of the block, delete the block now.
        if (pred_begin(BB) == pred_end(BB))
          // We know there are no successors, so just nuke the block.
          M->getBasicBlockList().erase(BB);

        return true;
      }

      // Check out all of the conditional branches going to this return
      // instruction.  If any of them just select between returns, change the
      // branch itself into a select/return pair.
      while (!CondBranchPreds.empty()) {
        BranchInst *BI = CondBranchPreds.back();
        CondBranchPreds.pop_back();

        // Check to see if the non-BB successor is also a return block.
        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
            SimplifyCondBranchToTwoReturns(BI))
          return true;
      }
    }
  } else if (isa<UnwindInst>(BB->begin())) {
    // Check to see if the first instruction in this block is just an unwind.
    // If so, replace any invoke instructions which use this as an exception
    // destination with call instructions, and any unconditional branch
    // predecessor with an unwind.
    //
    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
    while (!Preds.empty()) {
      BasicBlock *Pred = Preds.back();
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
        if (BI->isUnconditional()) {
          Pred->getInstList().pop_back();  // nuke uncond branch
          new UnwindInst(Pred);            // Use unwind.
          Changed = true;
        }
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
        if (II->getUnwindDest() == BB) {
          // Insert a new branch instruction before the invoke, because this
          // is now a fall through...
          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
          Pred->getInstList().remove(II);   // Take out of symbol table

          // Insert the call now...
          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
          CallInst *CI = CallInst::Create(II->getCalledValue(),
                                          Args.begin(), Args.end(),
                                          II->getName(), BI);
          CI->setCallingConv(II->getCallingConv());
          CI->setAttributes(II->getAttributes());
          // If the invoke produced a value, the Call now does instead
          II->replaceAllUsesWith(CI);
          delete II;
          Changed = true;
        }

      Preds.pop_back();
    }

    // If this block is now dead, remove it.
    if (pred_begin(BB) == pred_end(BB)) {
      // We know there are no successors, so just nuke the block.
      M->getBasicBlockList().erase(BB);
      return true;
    }

  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (isValueEqualityComparison(SI)) {
      // If we only have one predecessor, and if it is a branch on this value,
      // see if that predecessor totally determines the outcome of this switch.
      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
          return SimplifyCFG(BB) || 1;

      // If the block only contains the switch, see if we can fold the block
      // away into any preds.
      BasicBlock::iterator BBI = BB->begin();
      // Ignore dbg intrinsics.
      while (isa<DbgInfoIntrinsic>(BBI))
        ++BBI;
      if (SI == &*BBI)
        if (FoldValueComparisonIntoPredecessors(SI))
          return SimplifyCFG(BB) || 1;
    }
  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isUnconditional()) {
      BasicBlock::iterator BBI = BB->getFirstNonPHI();

      BasicBlock *Succ = BI->getSuccessor(0);
      // Ignore dbg intrinsics.
      while (isa<DbgInfoIntrinsic>(BBI))
        ++BBI;
      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
          Succ != BB)             // Don't hurt infinite loops!
        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
          return true;
      
    } else {  // Conditional branch
      if (isValueEqualityComparison(BI)) {
        // If we only have one predecessor, and if it is a branch on this value,
        // see if that predecessor totally determines the outcome of this
        // switch.
        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
            return SimplifyCFG(BB) || 1;

        // This block must be empty, except for the setcond inst, if it exists.
        // Ignore dbg intrinsics.
        BasicBlock::iterator I = BB->begin();
        // Ignore dbg intrinsics.
        while (isa<DbgInfoIntrinsic>(I))
          ++I;
        if (&*I == BI) {
          if (FoldValueComparisonIntoPredecessors(BI))
            return SimplifyCFG(BB) | true;
        } else if (&*I == cast<Instruction>(BI->getCondition())){
          ++I;
          // Ignore dbg intrinsics.
          while (isa<DbgInfoIntrinsic>(I))
            ++I;
          if(&*I == BI) {
            if (FoldValueComparisonIntoPredecessors(BI))
              return SimplifyCFG(BB) | true;
          }
        }
      }

      // If this is a branch on a phi node in the current block, thread control
      // through this block if any PHI node entries are constants.
      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
        if (PN->getParent() == BI->getParent())
          if (FoldCondBranchOnPHI(BI))
            return SimplifyCFG(BB) | true;

      // If this basic block is ONLY a setcc and a branch, and if a predecessor
      // branches to us and one of our successors, fold the setcc into the
      // predecessor and use logical operations to pick the right destination.
      if (FoldBranchToCommonDest(BI))
        return SimplifyCFG(BB) | 1;


      // Scan predecessor blocks for conditional branches.
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
          if (PBI != BI && PBI->isConditional())
            if (SimplifyCondBranchToCondBranch(PBI, BI))
              return SimplifyCFG(BB) | true;
    }
  } else if (isa<UnreachableInst>(BB->getTerminator())) {
    // If there are any instructions immediately before the unreachable that can
    // be removed, do so.
    Instruction *Unreachable = BB->getTerminator();
    while (Unreachable != BB->begin()) {
      BasicBlock::iterator BBI = Unreachable;
      --BBI;
      // Do not delete instructions that can have side effects, like calls
      // (which may never return) and volatile loads and stores.
      if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;

      if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
        if (SI->isVolatile())
          break;

      if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
        if (LI->isVolatile())
          break;

      // Delete this instruction
      BB->getInstList().erase(BBI);
      Changed = true;
    }

    // If the unreachable instruction is the first in the block, take a gander
    // at all of the predecessors of this instruction, and simplify them.
    if (&BB->front() == Unreachable) {
      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
        TerminatorInst *TI = Preds[i]->getTerminator();

        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
          if (BI->isUnconditional()) {
            if (BI->getSuccessor(0) == BB) {
              new UnreachableInst(TI);
              TI->eraseFromParent();
              Changed = true;
            }
          } else {
            if (BI->getSuccessor(0) == BB) {
              BranchInst::Create(BI->getSuccessor(1), BI);
              EraseTerminatorInstAndDCECond(BI);
            } else if (BI->getSuccessor(1) == BB) {
              BranchInst::Create(BI->getSuccessor(0), BI);
              EraseTerminatorInstAndDCECond(BI);
              Changed = true;
            }
          }
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
            if (SI->getSuccessor(i) == BB) {
              BB->removePredecessor(SI->getParent());
              SI->removeCase(i);
              --i; --e;
              Changed = true;
            }
          // If the default value is unreachable, figure out the most popular
          // destination and make it the default.
          if (SI->getSuccessor(0) == BB) {
            std::map<BasicBlock*, unsigned> Popularity;
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
              Popularity[SI->getSuccessor(i)]++;

            // Find the most popular block.
            unsigned MaxPop = 0;
            BasicBlock *MaxBlock = 0;
            for (std::map<BasicBlock*, unsigned>::iterator
                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
              if (I->second > MaxPop) {
                MaxPop = I->second;
                MaxBlock = I->first;
              }
            }
            if (MaxBlock) {
              // Make this the new default, allowing us to delete any explicit
              // edges to it.
              SI->setSuccessor(0, MaxBlock);
              Changed = true;

              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
              // it.
              if (isa<PHINode>(MaxBlock->begin()))
                for (unsigned i = 0; i != MaxPop-1; ++i)
                  MaxBlock->removePredecessor(SI->getParent());

              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
                if (SI->getSuccessor(i) == MaxBlock) {
                  SI->removeCase(i);
                  --i; --e;
                }
            }
          }
        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
          if (II->getUnwindDest() == BB) {
            // Convert the invoke to a call instruction.  This would be a good
            // place to note that the call does not throw though.
            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
            II->removeFromParent();   // Take out of symbol table

            // Insert the call now...
            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
            CallInst *CI = CallInst::Create(II->getCalledValue(),
                                            Args.begin(), Args.end(),
                                            II->getName(), BI);
            CI->setCallingConv(II->getCallingConv());
            CI->setAttributes(II->getAttributes());
            // If the invoke produced a value, the Call does now instead.
            II->replaceAllUsesWith(CI);
            delete II;
            Changed = true;
          }
        }
      }

      // If this block is now dead, remove it.
      if (pred_begin(BB) == pred_end(BB)) {
        // We know there are no successors, so just nuke the block.
        M->getBasicBlockList().erase(BB);
        return true;
      }
    }
  }

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  if (MergeBlockIntoPredecessor(BB))
    return true;

  // Otherwise, if this block only has a single predecessor, and if that block
  // is a conditional branch, see if we can hoist any code from this block up
  // into our predecessor.
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
  BasicBlock *OnlyPred = *PI++;
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
    if (*PI != OnlyPred) {
      OnlyPred = 0;       // There are multiple different predecessors...
      break;
    }
  
  if (OnlyPred)
    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
      if (BI->isConditional()) {
        // Get the other block.
        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
        PI = pred_begin(OtherBB);
        ++PI;
        
        if (PI == pred_end(OtherBB)) {
          // We have a conditional branch to two blocks that are only reachable
          // from the condbr.  We know that the condbr dominates the two blocks,
          // so see if there is any identical code in the "then" and "else"
          // blocks.  If so, we can hoist it up to the branching block.
          Changed |= HoistThenElseCodeToIf(BI);
        } else {
          BasicBlock* OnlySucc = NULL;
          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
               SI != SE; ++SI) {
            if (!OnlySucc)
              OnlySucc = *SI;
            else if (*SI != OnlySucc) {
              OnlySucc = 0;     // There are multiple distinct successors!
              break;
            }
          }

          if (OnlySucc == OtherBB) {
            // If BB's only successor is the other successor of the predecessor,
            // i.e. a triangle, see if we can hoist any code from this block up
            // to the "if" block.
            Changed |= SpeculativelyExecuteBB(BI, BB);
          }
        }
      }

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      // Change br (X == 0 | X == 1), T, F into a switch instruction.
      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
        Instruction *Cond = cast<Instruction>(BI->getCondition());
        // If this is a bunch of seteq's or'd together, or if it's a bunch of
        // 'setne's and'ed together, collect them.
        Value *CompVal = 0;
        std::vector<ConstantInt*> Values;
        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
        if (CompVal && CompVal->getType()->isInteger()) {
          // There might be duplicate constants in the list, which the switch
          // instruction can't handle, remove them now.
          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());

          // Figure out which block is which destination.
          BasicBlock *DefaultBB = BI->getSuccessor(1);
          BasicBlock *EdgeBB    = BI->getSuccessor(0);
          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);

          // Create the new switch instruction now.
          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
                                               Values.size(), BI);

          // Add all of the 'cases' to the switch instruction.
          for (unsigned i = 0, e = Values.size(); i != e; ++i)
            New->addCase(Values[i], EdgeBB);

          // We added edges from PI to the EdgeBB.  As such, if there were any
          // PHI nodes in EdgeBB, they need entries to be added corresponding to
          // the number of edges added.
          for (BasicBlock::iterator BBI = EdgeBB->begin();
               isa<PHINode>(BBI); ++BBI) {
            PHINode *PN = cast<PHINode>(BBI);
            Value *InVal = PN->getIncomingValueForBlock(*PI);
            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
              PN->addIncoming(InVal, *PI);
          }

          // Erase the old branch instruction.
          EraseTerminatorInstAndDCECond(BI);
          return true;
        }
      }

  return Changed;
}