Supported CSP Algorithms

Last update 4/30/02 dmitch

1. Introduction

This document describes, at a very high level, the capabilities of the Apple CSP (known herein as “AppleCSP”) for MacOS X. These capabilities are described in terms of key types and formats and supported algorithms.

This document also introduces some nomenclature which is used to describe various attributes of CSSM keys. Terms defined here are shown in bold both in their definition and usage.

2. Key Types and Formats

In general, the AppleCSP allows the creation and use of keys in either reference or raw type. For purposes of this document, a key’s type is defined by the value of its CSSM_KEYHEADER::BlobType field. A reference key has a type equal to CSSM_KEYBLOB_REFERENCE. A raw key has a type equal to CSSM_KEYBLOB_RAW. When keys are generated, the caller can specify one of the two blob types via the *KeyAttr flags in the API call (e.g., PublicKeyAttr in CSSM_GenerateKeyPair()).

The CDSA specs allow a number of formats for each type. A key’s format is defined by the CSSM_KEYHEADER::CSSM_KEYBLOB_FORMAT field. Generally in the AppleCSP, all keys of a given class and type have exactly one allowed format. (A key’s class is one of {Public,Private,Symmetric}. All reference keys have format CSSM_KEYBLOB_REF_FORMAT_INTEGER. The following tables define the supported formats for raw keys of specified class and algorithm.

Symmetric keys (all supported algorithms):

Format = CSSM_KEYBLOB_RAW_FORMAT_OCTET_STRING

Asymmetric keys:

Algorithm: CSSM_ALGID_RSA

Private: Format = CSSM_KEYBLOB_RAW_FORMAT_PKCS8

Public: Format = CSSM_KEYBLOB_RAW_FORMAT_PKCS1

Algorithm: CSSM_ALGID_DSA

Format = CSSM_KEYBLOB_RAW_FORMAT_FIPS186

Algorithm: CSSM_ALGID_FEE

Format = CSSM_KEYBLOB_RAW_FORMAT_NONE (DER)

 = CSSM_KEYBLOB_RAW_FORMAT_OCTET_STRING

 (raw bytes)

Note that any key which is generated by the CSP, in any legal type and format, can be used in any call which accepts that key class and algorithm. E.g., whenever an RSA public key is called for, the app may pass in a raw or reference key.

FEE keys can be generated in one of two formats; the default is FORMAT_NONE, which is a DER-encoded key format. To obtain FEE keys in FORMAT_OCTET_STRING, one has to specify additional context attributes via the CSSM_ATTRIBUTE_PUBLIC_KEY_FORMAT and CSSM_ATTRIBUTE_PRIVATE_KEY_FORMAT attributes.

Also note that if performance is of interest, the use of raw RSA and DSA keys is deprecated. Better performance is obtained using reference keys. There is no such advantage for symmetric keys.

3. Key Generation

The following tables list the supported algorithms for the specified key generation functions:

CSSM_GenerateKey

 Algorithm

Key size in bytes

CSSM_ALGID_DES

8

CSSM_ALGID_3DES_3KEY

24

CSSM_ALGID_RC2

1..128

CSSM_ALGID_RC4

1..512

CSSM_ALGID_RC5

1..255

CSSM_ALGID_SHA1HMAC (for MAC only)

20..256

CSSM_ALGID_AES

128, 192, 256

CSSM_ALGID_ASC

1..64

CSSM_GenerateKeyPair

 Algorithm

Key size in bits

CSSM_ALGID_RSA

>= 512; key size mod 16 == 0

CSSM_ALGID_DSA

>= 512

CSSM_ALGID_FEE:

See below

CSSM_ALGID_DH

512 <= keySize <= 2048

FEE Key Generation

FEE keys can only be generated in a limited number of discrete sizes. Additionally, two parameters may optionally be specified when generating FEE key pairs. These parameters define the elliptic curve upon which subsequent elliptic algebra is performed. The parameters are known as “prime type” and “curve type”. (A discussion of the significance of these parameters is outside the scope of this document.) These parameters, both of which have default values for any given (legal) key size, can be specified as additional attributes in the key generation context passed to CSSM_GenerateKeyPair. The attribute types and values can be found in <Security/cssmapple.h>. The prime type is specified via attribute type CSSM_ATTRIBUTE_FEE_PRIME_TYPE; the curve type is specified via attribute type CSSM_ATTRIBUTE_FEE_CURVE_TYPE.

A complete list of legal key sizes and curve parameters follows. The default curve each key size with multiple sets of curve parameters is shown; when specifying key size, prime type, and curve parameters, only enough info to unambiguously identify the curve is needed.

Key Size (bits)

Prime Type

Curve Type

 31

Mersenne

Montgomery

 31

Mersenne

Weierstrass (default)

 127

Mersenne

Montgomery

 128

FEE

Weierstrass

 161

FEE

Weierstrass (default)

 161

General

Weierstrass

 192

General

Weierstrass

Diffie-Hellman Key Generation

Diffie-Hellman (D-H) key pair generation involves either the specification or the generation of D-H algorithm parameters. The contents and meaning of these algorithm parameters is beyond the scope of this document; suffice it to say the D-H algorithm parameters are encapsulated in an opaque blob in the form of a CSSM_DATA. This parameter blob can be passed into the CSP at CSSM_CSP_CreateKeyGenContext time (via the Params argument); it can be calculated explicitly by the CSP via CSSM_GenerateAlgorithmParameters, which returns the calculated parameters to the caller (as well as adding the calculated parameters to the key generation context), or it can be implicitly calculated by the CSP at D-H key generation time if no parameters have been specified in the context. For two parties to perform D-H key exchange, they must use the same D-H algorithm parameters. Distribution of D-H parameters, in the clear and in public, does not compromise the security of the D-H key exchange mechanism in any way and is in fact very common. Calculation of D-H algorithm parameters is a rather time-consuming process - it takes about 90 seconds on an 800 MHz G4 to calculate algorithm parameters for 1024-bit D-H keys - so systems which perform D-H key exchange typically do not calculate these parameters very often - certainly not once for each key pair.

CSSM_DeriveKey

Key Derivation algorithms (AlgorithmID):

CSSM_ALGID_PKCS5_PBKDF2

CSSM_ALGID_DH

Derived key algorithm (DeriveKeyType)

The legal key sizes are the same as those shown for

CSSM_GenerateKey.

CSSM_ALGID_DES

CSSM_ALGID_3DES_3KEY

CSSM_ALGID_AES

CSSM_ALGID_RC2

CSSM_ALGID_RC4

CSSM_ALGID_RC5

CSSM_ALGID_ASC

CSSM_ALGID_SHA1HMAC

CSSM_DeriveKey parameters

Parameters for CSSM_ALGID_PKCS5_PBKDF2 key derivation are placed in a CSSM_PKCS5_PBKDF2_PARAMS struct, a pointer to which is passed to CSSM_DeriveKey in the Params argument. (The Params->Length field must be set to sizeof(CSSM_PKCS5_PBKDF2_PARAMS)). The CSSM_PKCS5_PBKDF2_PARAMS .PseudoRandomFunction field must currently be set to CSSM_PKCS5_PRF_HMAC_SHA1. All of these structs and values are defined in <Security/cssmtype.h>. This algorithm does not have any CSMS_KEY as an input, so the BaseKey argument of CSSM_CSP_CreateDeriveKeyContext is NULL.

The Params field for Diffie-Hellman (D-H) key exchange is the public key blob of the party with whom one is performing key exchange. In other words, Alice and Bob both generate a D-H key pair. Each sends the other party the KeyData blob of their public key. Bob uses Alice's public key blob as the Params field for his CSSSM_DeriveKey call. Alice uses Bob's public key blob as the Params field for her CSSSM_DeriveKey call. Each use their own private key as the BaseKey in the CSSM_CSP_CreateDeriveKeyContext call.

4. Cryptographic Operations

Symmetric Encryption/Decryption

Note “PKCS5/7 padding” means that either PKCS5 or PKCS7 padding may be specified.

The two are identical for 8-byte block ciphers.

 Algorithm

 Modes (CSSM_ALGMODE_xxx)

Notes
CSSM_ALGID_DES

 CBCPadIV8

Requires PKCS5/7 padding

Requires an 8-byte IV

 CBC_IV8

Requires an 8-byte IV

 ECBPad

Requires PKCS5/7 padding

 ECB

CSSM_ALGID_3DES_3KEY_EDE

 CBCPadIV8

Requires PKCS5/7 padding

Requires an 8-byte IV

 CBC_IV8

Requires an 8-byte IV

 ECBPad

Requires PKCS5/7 padding

 ECB

CSSM_ALGID_AES

 CBCPadIV8

Requires PKCS7 padding

Requires a block-sized IV

 CBC_IV8

Requires a block-sized IV

 ECBPad

Requires PKCS7 padding

 ECB

NOTE: AES allows block sizes of 16, 24, and 32 bytes. The default is 16 bytes.

 The application can specify other block sizes via a

 CSSM_ATTRIBUTE_BLOCK_SIZE attribute in the symmetric context.

NOTE: the AES implementation has been heavily optimized for the case of 16-byte

keys and blocks.

CSSM_ALGID_RC4

 NONE

No options

CSSM_ALGID_RC5

 CBCPadIV8

Requires PKCS5/7 padding

Requires an 8-byte IV

 CBC_IV8

Requires an 8-byte IV

 ECBPad

Requires PKCS5/7 padding

 ECB

Asymmetric Encryption/Decryption

Encryption algorithm

Required key algorithm
CSSM_ALGID_RSA

CSSM_ALGID_RSA

CSSM_ALGID_FEED
CSSM_ALGID_FEE

CSSM_ALGID_FEEDExp
CSSM_ALGID_FEE

The FEE encryption algorithms do not require (or accept) the specification of a mode or of a padding specification. They implement a custom padding algorithm.

The RSA algorithm allows for an optional mode and padding (mode and padding are independent). Padding can be CSSM_PADDING_NONE or CSSM_PADDING_PKCS1. Specifying CSSM_PADDING_NONE is not recommended unless the programmer really knows what they are doing; note that with CSSM_PADDING_NONE, the input size for both encrypting and decrypting must be exactly the same as the key size.

RSA encryption and decryption also allow an optional mode argument (which must be manually added to the asymmetric context via CSSM_UpdateContextAttributes()). These optional modes are CSSM_ALGMODE_PUBLIC_KEY and CSSM_ALGMODE_PRIVATE_KEY. Normally, RSA encryption is performed with a public key; RSA decryption is performed with a private key. In the absence a mode attribute specifying otherwise, these operations will fail with a CSSMERR_CSP_INVALID_KEY_CLASS error if performed with the improper key class. It is possible to perform RSA encryption with a private key by specifying CSSM_ALGMODE_PRIVATE_KEY, and RSA decryption using a public key by specifying CSSM_ALGMODE_PUBLIC_KEY. (These operations are actually "raw" RSA signature operations.)

Digital signature and verify

The following algorithms are supported, shown with the required key type.

Signature algorithm

Required key algorithm
CSSM_ALGID_SHA1WithRSA

CSSM_ALGID_RSA

CSSM_ALGID_MD5WithRSA

CSSM_ALGID_RSA

CSSM_ALGID_RSA (raw; see note)

CSSM_ALGID_RSA

CSSM_ALGID_SHA1WithDSA

CSSM_ALGID_DSA

CSSM_ALGID_DSA (raw)

CSSM_ALGID_DSA

CSSM_ALGID_FEE_MD5

CSSM_ALGID_FEE

CSSM_ALGID_FEE_SHA1

CSSM_ALGID_FEE

CSSM_ALGID_SHA1WithECDSA

CSSM_ALGID_FEE

CSSM_ALGID_FEE (raw)

CSSM_ALGID_FEE

CSSM_ALGID_ECDSA (raw)

CSSM_ALGID_FEE

Note: “Raw” sign and verify is used to sign or verify a digest which is calculated by the app separately from the sign/verify operation. Raw RSA sign and verify require the specification of the digest algorithm at Sign/Verify time. This is done via the “DigestAlgorithm” to the CSSM_SignData and CSSM_VerifyData functions.

Digest

CSSM_ALGID_MD5

Outsize = 16 bytes

CSSM_ALGID_SHA1

Outsize = 20 bytes

MAC

CSSM_ALGID_SHA1HMAC

Outsize = 20 bytes

CSSM_ALGID_SHA1HMAC_LEGACY

Outsize = 20 bytes

The CSSM_ALGID_SHA1HMAC_LEGACY algorithm is backwards compatible with the SHA1HMAC algorithm from the Cheetah implementation of the CSP. This implementation, in the BSAFE library, was actually faulty in that it produced different results for the same data input if updates were performed on different boundaries. Unfortunately, Cheetah keychains are not usable unless we can verify their MACs with this legacy algorithm. Obviously future use of this algorithm to actually generate MAC values is deprecated.

Wrap/Unwrap key

You can wrap any key with any other key, as long as the CSP understands those keys. The only exception is that AES can not be used as the wrapping algorithm. Both CSSM_WrapKey() and CSSM_UnwrapKey() expect either a symmetric context or an asymmetric context, depending on the key doing the wrap/unwrap. Set up the context as if you were doing an encrypt/decrypt (see above for modes and restrictions; a padding mode must generally be used.). The output of a WrapKey operation is a wrapped key (CSSM_KEYBLOB_WRAPPED), as is the input for an UnwrapKey operation. In addition, NULL wrap/unwrap is supported. A NULL wrap converts a reference key into a raw key. A NULL unwrap converts a raw key into a reference key. Both require a symmetric context, with no key, algorithm CSSM_ALGID_NONE, mode CSSM_ALGMODE_NONE.

Pseudo Random Number Generation (CSSM_GenerateRandom())

The CSP supports one PRNG algorithm, ALGID_APPLE_YARROW. This algorithm uses a version of Yarrow, originally written by Counterpane Labs, modified for the OS X platform. Specifying a seed in the cryptographic context is optional; if present, the seed data is added to the current entropy pool but does not fully specify the state of the Yarrow PRNG. (This operation, in which seed data is added to the entropy pool, is only possible when the current process is running as root.) Note that specifying the same seed in multiple calls to (CSSM_CSP_CreateRandomGenContext(), CSSM_GenerateRandom()) will not result in the generation of repeatable pseudorandom numbers.

Revision History

Version
 Date

Changes
 0.1

4/18/00
Initial distribution.

 0.2

5/16/00
Updated for alpha release of CSP.

 0.3

7/13/00
Added CSSM_ALGID_3DES key generation and derivation.

Added CSSM_ALGID_3DES_3KEY_EDE encrypt/decrypt.

Removed CSSM_ALGMODE_ECB modes from feedback ciphers.

Cleaned up IV specification.

Added ALGID_APPLE_YARROW PRNG.

 0.4

10/25/00
Added AES symmetric encryption.

 0.5

4/26/01
Added ASC; added signature algorithms; modified modes for

symmetric encryption algorithms

 0.6

9/5/01

Added CSSM_ALGID_SHA1HMAC_LEGACY

Added raw DSA, FEE, and ECDSA signatures

 0.7

4/30/02
Added Diffie-Hellman Key gen and DeriveKey

Added CDSA_PADDING_NONE option for RSA

Added CSSM_ALGMODE_{PUBLIC,PRIVATE}_KEY for RSA

Supported CSP Algorithms Rev. 0.7 Page 1 of 10

