ubidi.c   [plain text]


/*
******************************************************************************
*
*   Copyright (C) 1999-2006, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
******************************************************************************
*   file name:  ubidi.c
*   encoding:   US-ASCII
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 1999jul27
*   created by: Markus W. Scherer
*/

/* set import/export definitions */
#ifndef U_COMMON_IMPLEMENTATION
#   define U_COMMON_IMPLEMENTATION
#endif

#include "cmemory.h"
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/uchar.h"
#include "unicode/ubidi.h"
#include "ubidi_props.h"
#include "ubidiimp.h"

/*
 * General implementation notes:
 *
 * Throughout the implementation, there are comments like (W2) that refer to
 * rules of the BiDi algorithm in its version 5, in this example to the second
 * rule of the resolution of weak types.
 *
 * For handling surrogate pairs, where two UChar's form one "abstract" (or UTF-32)
 * character according to UTF-16, the second UChar gets the directional property of
 * the entire character assigned, while the first one gets a BN, a boundary
 * neutral, type, which is ignored by most of the algorithm according to
 * rule (X9) and the implementation suggestions of the BiDi algorithm.
 *
 * Later, adjustWSLevels() will set the level for each BN to that of the
 * following character (UChar), which results in surrogate pairs getting the
 * same level on each of their surrogates.
 *
 * In a UTF-8 implementation, the same thing could be done: the last byte of
 * a multi-byte sequence would get the "real" property, while all previous
 * bytes of that sequence would get BN.
 *
 * It is not possible to assign all those parts of a character the same real
 * property because this would fail in the resolution of weak types with rules
 * that look at immediately surrounding types.
 *
 * As a related topic, this implementation does not remove Boundary Neutral
 * types from the input, but ignores them wherever this is relevant.
 * For example, the loop for the resolution of the weak types reads
 * types until it finds a non-BN.
 * Also, explicit embedding codes are neither changed into BN nor removed.
 * They are only treated the same way real BNs are.
 * As stated before, adjustWSLevels() takes care of them at the end.
 * For the purpose of conformance, the levels of all these codes
 * do not matter.
 *
 * Note that this implementation never modifies the dirProps
 * after the initial setup.
 *
 *
 * In this implementation, the resolution of weak types (Wn),
 * neutrals (Nn), and the assignment of the resolved level (In)
 * are all done in one single loop, in resolveImplicitLevels().
 * Changes of dirProp values are done on the fly, without writing
 * them back to the dirProps array.
 *
 *
 * This implementation contains code that allows to bypass steps of the
 * algorithm that are not needed on the specific paragraph
 * in order to speed up the most common cases considerably,
 * like text that is entirely LTR, or RTL text without numbers.
 *
 * Most of this is done by setting a bit for each directional property
 * in a flags variable and later checking for whether there are
 * any LTR characters or any RTL characters, or both, whether
 * there are any explicit embedding codes, etc.
 *
 * If the (Xn) steps are performed, then the flags are re-evaluated,
 * because they will then not contain the embedding codes any more
 * and will be adjusted for override codes, so that subsequently
 * more bypassing may be possible than what the initial flags suggested.
 *
 * If the text is not mixed-directional, then the
 * algorithm steps for the weak type resolution are not performed,
 * and all levels are set to the paragraph level.
 *
 * If there are no explicit embedding codes, then the (Xn) steps
 * are not performed.
 *
 * If embedding levels are supplied as a parameter, then all
 * explicit embedding codes are ignored, and the (Xn) steps
 * are not performed.
 *
 * White Space types could get the level of the run they belong to,
 * and are checked with a test of (flags&MASK_EMBEDDING) to
 * consider if the paragraph direction should be considered in
 * the flags variable.
 *
 * If there are no White Space types in the paragraph, then
 * (L1) is not necessary in adjustWSLevels().
 */

/* to avoid some conditional statements, use tiny constant arrays */
static const Flags flagLR[2]={ DIRPROP_FLAG(L), DIRPROP_FLAG(R) };
static const Flags flagE[2]={ DIRPROP_FLAG(LRE), DIRPROP_FLAG(RLE) };
static const Flags flagO[2]={ DIRPROP_FLAG(LRO), DIRPROP_FLAG(RLO) };

#define DIRPROP_FLAG_LR(level) flagLR[(level)&1]
#define DIRPROP_FLAG_E(level) flagE[(level)&1]
#define DIRPROP_FLAG_O(level) flagO[(level)&1]

/* UBiDi object management -------------------------------------------------- */

U_CAPI UBiDi * U_EXPORT2
ubidi_open(void)
{
    UErrorCode errorCode=U_ZERO_ERROR;
    return ubidi_openSized(0, 0, &errorCode);
}

U_CAPI UBiDi * U_EXPORT2
ubidi_openSized(int32_t maxLength, int32_t maxRunCount, UErrorCode *pErrorCode) {
    UBiDi *pBiDi;

    /* check the argument values */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return NULL;
    } else if(maxLength<0 || maxRunCount<0) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return NULL;    /* invalid arguments */
    }

    /* allocate memory for the object */
    pBiDi=(UBiDi *)uprv_malloc(sizeof(UBiDi));
    if(pBiDi==NULL) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return NULL;
    }

    /* reset the object, all pointers NULL, all flags FALSE, all sizes 0 */
    uprv_memset(pBiDi, 0, sizeof(UBiDi));

    /* get BiDi properties */
    pBiDi->bdp=ubidi_getSingleton(pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        uprv_free(pBiDi);
        return NULL;
    }

    /* allocate memory for arrays as requested */
    if(maxLength>0) {
        if( !getInitialDirPropsMemory(pBiDi, maxLength) ||
            !getInitialLevelsMemory(pBiDi, maxLength)
        ) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        }
    } else {
        pBiDi->mayAllocateText=TRUE;
    }

    if(maxRunCount>0) {
        if(maxRunCount==1) {
            /* use simpleRuns[] */
            pBiDi->runsSize=sizeof(Run);
        } else if(!getInitialRunsMemory(pBiDi, maxRunCount)) {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        }
    } else {
        pBiDi->mayAllocateRuns=TRUE;
    }

    if(U_SUCCESS(*pErrorCode)) {
        return pBiDi;
    } else {
        ubidi_close(pBiDi);
        return NULL;
    }
}

/*
 * We are allowed to allocate memory if memory==NULL or
 * mayAllocate==TRUE for each array that we need.
 * We also try to grow and shrink memory as needed if we
 * allocate it.
 *
 * Assume sizeNeeded>0.
 * If *pMemory!=NULL, then assume *pSize>0.
 *
 * ### this realloc() may unnecessarily copy the old data,
 * which we know we don't need any more;
 * is this the best way to do this??
 */
U_CFUNC UBool
ubidi_getMemory(void **pMemory, int32_t *pSize, UBool mayAllocate, int32_t sizeNeeded) {
    /* check for existing memory */
    if(*pMemory==NULL) {
        /* we need to allocate memory */
        if(mayAllocate && (*pMemory=uprv_malloc(sizeNeeded))!=NULL) {
            *pSize=sizeNeeded;
            return TRUE;
        } else {
            return FALSE;
        }
    } else {
        /* there is some memory, is it enough or too much? */
        if(sizeNeeded>*pSize && !mayAllocate) {
            /* not enough memory, and we must not allocate */
            return FALSE;
        } else if(sizeNeeded!=*pSize && mayAllocate) {
            /* FOOD FOR THOUGHT: in hope to improve performance, we should
             * try never shrinking memory, only growing it when required.
             */
            /* we may try to grow or shrink */
            void *memory;

            if((memory=uprv_realloc(*pMemory, sizeNeeded))!=NULL) {
                *pMemory=memory;
                *pSize=sizeNeeded;
                return TRUE;
            } else {
                /* we failed to grow */
                return FALSE;
            }
        } else {
            /* we have at least enough memory and must not allocate */
            return TRUE;
        }
    }
}

U_CAPI void U_EXPORT2
ubidi_close(UBiDi *pBiDi) {
    if(pBiDi!=NULL) {
        pBiDi->pParaBiDi=NULL;          /* in case one tries to reuse this block */
        if(pBiDi->dirPropsMemory!=NULL) {
            uprv_free(pBiDi->dirPropsMemory);
        }
        if(pBiDi->levelsMemory!=NULL) {
            uprv_free(pBiDi->levelsMemory);
        }
        if(pBiDi->runsMemory!=NULL) {
            uprv_free(pBiDi->runsMemory);
        }
        if(pBiDi->parasMemory!=NULL) {
            uprv_free(pBiDi->parasMemory);
        }
        if(pBiDi->insertPoints.points!=NULL) {
            uprv_free(pBiDi->insertPoints.points);
        }

        uprv_free(pBiDi);
    }
}

/* set to approximate "inverse BiDi" ---------------------------------------- */

U_CAPI void U_EXPORT2
ubidi_setInverse(UBiDi *pBiDi, UBool isInverse) {
    if(pBiDi!=NULL) {
        pBiDi->isInverse=isInverse;
        pBiDi->reorderingMode = isInverse ? UBIDI_REORDER_INVERSE_NUMBERS_AS_L
                                          : UBIDI_REORDER_DEFAULT;
    }
}

U_CAPI UBool U_EXPORT2
ubidi_isInverse(UBiDi *pBiDi) {
    if(pBiDi!=NULL) {
        return pBiDi->isInverse;
    } else {
        return FALSE;
    }
}

/* FOOD FOR THOUGHT: currently the reordering modes are a mixture of
 * algorithm for direct BiDi, algorithm for inverse BiDi and the bizarre
 * concept of RUNS_ONLY which is a double operation.
 * It could be advantageous to divide this into 3 concepts:
 * a) Operation: direct / inverse / RUNS_ONLY
 * b) Direct algorithm: default / NUMBERS_SPECIAL / GROUP_NUMBERS_WITH_L
 * c) Inverse algorithm: default / INVERSE_LIKE_DIRECT / NUMBERS_SPECIAL
 * This would allow combinations not possible today like RUNS_ONLY with
 * NUMBERS_SPECIAL.
 * Also allow to set INSERT_MARKS for the direct step of RUNS_ONLY and
 * REMOVE_CONTROLS for the inverse step.
 * Not all combinations would be supported, and probably not all do make sense.
 * This would need to document which ones are supported and what are the
 * fallbacks for unsupported combinations.
 */
U_CAPI void U_EXPORT2
ubidi_setReorderingMode(UBiDi *pBiDi, UBiDiReorderingMode reorderingMode) {
    if ((pBiDi != NULL) && (reorderingMode >= UBIDI_REORDER_DEFAULT)
                        && (reorderingMode < UBIDI_REORDER_COUNT)) {
        pBiDi->reorderingMode = reorderingMode;
        pBiDi->isInverse = reorderingMode == UBIDI_REORDER_INVERSE_NUMBERS_AS_L;
    }
}

U_CAPI UBiDiReorderingMode U_EXPORT2
ubidi_getReorderingMode(UBiDi *pBiDi) {
    if (pBiDi != NULL) {
        return pBiDi->reorderingMode;
    } else {
        return UBIDI_REORDER_DEFAULT;
    }
}

U_CAPI void U_EXPORT2
ubidi_setReorderingOptions(UBiDi *pBiDi, uint32_t reorderingOptions) {
    if (reorderingOptions & UBIDI_OPTION_REMOVE_CONTROLS) {
        reorderingOptions&=~UBIDI_OPTION_INSERT_MARKS;
    }
    if (pBiDi != NULL) {
        pBiDi->reorderingOptions = reorderingOptions;
    }
}

U_CAPI uint32_t U_EXPORT2
ubidi_getReorderingOptions(UBiDi *pBiDi) {
    if (pBiDi != NULL) {
        return pBiDi->reorderingOptions;
    } else {
        return 0;
    }
}

/* perform (P2)..(P3) ------------------------------------------------------- */

/*
 * Get the directional properties for the text,
 * calculate the flags bit-set, and
 * determine the paragraph level if necessary.
 */
static void
getDirProps(UBiDi *pBiDi) {
    const UChar *text=pBiDi->text;
    DirProp *dirProps=pBiDi->dirPropsMemory;    /* pBiDi->dirProps is const */

    int32_t i=0, i0, i1, length=pBiDi->originalLength;
    Flags flags=0;      /* collect all directionalities in the text */
    UChar32 uchar;
    DirProp dirProp=0, paraDirDefault=0;/* initialize to avoid compiler warnings */
    UBool isDefaultLevel=IS_DEFAULT_LEVEL(pBiDi->paraLevel);
    /* for inverse BiDi, the default para level is set to RTL if there is a
       strong character at either end of the text                           */
    UBool isDefaultLevelInverse=isDefaultLevel &&
            (pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_LIKE_DIRECT ||
             pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL);
    int32_t lastArabicPos=-1;
    int32_t controlCount=0;
    UBool removeBiDiControls = pBiDi->reorderingOptions &
                               UBIDI_OPTION_REMOVE_CONTROLS;

    typedef enum {
         NOT_CONTEXTUAL,                /* 0: not contextual paraLevel */
         LOOKING_FOR_STRONG,            /* 1: looking for first strong char */
         FOUND_STRONG_CHAR              /* 2: found first strong char       */
    } State;
    State state;
    int32_t paraStart=0;                /* index of first char in paragraph */
    DirProp paraDir;                    /* == CONTEXT_RTL within paragraphs
                                           starting with strong R char      */
    DirProp lastStrongDir=0;            /* for default level & inverse BiDi */
    int32_t lastStrongLTR=0;            /* for STREAMING option             */

    if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
        pBiDi->length=0;
        lastStrongLTR=0;
    }
    if(isDefaultLevel) {
        paraDirDefault=pBiDi->paraLevel&1 ? CONTEXT_RTL : 0;
        paraDir=paraDirDefault;
        lastStrongDir=paraDirDefault;
        state=LOOKING_FOR_STRONG;
    } else {
        state=NOT_CONTEXTUAL;
        paraDir=0;
    }
    /* count paragraphs and determine the paragraph level (P2..P3) */
    /*
     * see comment in ubidi.h:
     * the DEFAULT_XXX values are designed so that
     * their bit 0 alone yields the intended default
     */
    for( /* i=0 above */ ; i<length; ) {
        /* i is incremented by UTF_NEXT_CHAR */
        i0=i;           /* index of first code unit */
        UTF_NEXT_CHAR(text, i, length, uchar);
        i1=i-1;         /* index of last code unit, gets the directional property */
        flags|=DIRPROP_FLAG(dirProp=ubidi_getCustomizedClass(pBiDi, uchar));
        dirProps[i1]=dirProp|paraDir;
        if(i1>i0) {     /* set previous code units' properties to BN */
            flags|=DIRPROP_FLAG(BN);
            do {
                dirProps[--i1]=BN|paraDir;
            } while(i1>i0);
        }
        if(state==LOOKING_FOR_STRONG) {
            if(dirProp==L) {
                state=FOUND_STRONG_CHAR;
                if(paraDir) {
                    paraDir=0;
                    for(i1=paraStart; i1<i; i1++) {
                        dirProps[i1]&=~CONTEXT_RTL;
                    }
                }
                continue;
            }
            if(dirProp==R || dirProp==AL) {
                state=FOUND_STRONG_CHAR;
                if(paraDir==0) {
                    paraDir=CONTEXT_RTL;
                    for(i1=paraStart; i1<i; i1++) {
                        dirProps[i1]|=CONTEXT_RTL;
                    }
                }
                continue;
            }
        }
        if(dirProp==L) {
            lastStrongDir=0;
            lastStrongLTR=i;            /* i is index to next character */
        }
        else if(dirProp==R) {
            lastStrongDir=CONTEXT_RTL;
        }
        else if(dirProp==AL) {
            lastStrongDir=CONTEXT_RTL;
            lastArabicPos=i-1;
        }
        else if(dirProp==B) {
            if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
                pBiDi->length=i;        /* i is index to next character */
            }
            if(isDefaultLevelInverse && (lastStrongDir==CONTEXT_RTL) &&(paraDir!=lastStrongDir)) {
                for( ; paraStart<i; paraStart++) {
                    dirProps[paraStart]|=CONTEXT_RTL;
                }
            }
            if(i<length) {              /* B not last char in text */
                if(!((uchar==CR) && (text[i]==LF))) {
                    pBiDi->paraCount++;
                }
                if(isDefaultLevel) {
                    state=LOOKING_FOR_STRONG;
                    paraStart=i;        /* i is index to next character */
                    paraDir=paraDirDefault;
                    lastStrongDir=paraDirDefault;
                }
            }
        }
        if(removeBiDiControls && IS_BIDI_CONTROL_CHAR(uchar)) {
            controlCount++;
        }
    }
    if(isDefaultLevelInverse && (lastStrongDir==CONTEXT_RTL) &&(paraDir!=lastStrongDir)) {
        for(i1=paraStart; i1<length; i1++) {
            dirProps[i1]|=CONTEXT_RTL;
        }
    }
    if(isDefaultLevel) {
        pBiDi->paraLevel=GET_PARALEVEL(pBiDi, 0);
    }
    if(pBiDi->reorderingOptions & UBIDI_OPTION_STREAMING) {
        if((lastStrongLTR>pBiDi->length) &&
           (GET_PARALEVEL(pBiDi, lastStrongLTR)==0)) {
            pBiDi->length = lastStrongLTR;
        }
        if(pBiDi->length<pBiDi->originalLength) {
            pBiDi->paraCount--;
        }
    }
    /* The following line does nothing new for contextual paraLevel, but is
       needed for absolute paraLevel.                               */
    flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);

    if(pBiDi->orderParagraphsLTR && (flags&DIRPROP_FLAG(B))) {
        flags|=DIRPROP_FLAG(L);
    }

    pBiDi->controlCount = controlCount;
    pBiDi->flags=flags;
    pBiDi->lastArabicPos=lastArabicPos;
}

/* perform (X1)..(X9) ------------------------------------------------------- */

/* determine if the text is mixed-directional or single-directional */
static UBiDiDirection
directionFromFlags(UBiDi *pBiDi) {
    Flags flags=pBiDi->flags;
    /* if the text contains AN and neutrals, then some neutrals may become RTL */
    if(!(flags&MASK_RTL || ((flags&DIRPROP_FLAG(AN)) && (flags&MASK_POSSIBLE_N)))) {
        return UBIDI_LTR;
    } else if(!(flags&MASK_LTR)) {
        return UBIDI_RTL;
    } else {
        return UBIDI_MIXED;
    }
}

/*
 * Resolve the explicit levels as specified by explicit embedding codes.
 * Recalculate the flags to have them reflect the real properties
 * after taking the explicit embeddings into account.
 *
 * The BiDi algorithm is designed to result in the same behavior whether embedding
 * levels are externally specified (from "styled text", supposedly the preferred
 * method) or set by explicit embedding codes (LRx, RLx, PDF) in the plain text.
 * That is why (X9) instructs to remove all explicit codes (and BN).
 * However, in a real implementation, this removal of these codes and their index
 * positions in the plain text is undesirable since it would result in
 * reallocated, reindexed text.
 * Instead, this implementation leaves the codes in there and just ignores them
 * in the subsequent processing.
 * In order to get the same reordering behavior, positions with a BN or an
 * explicit embedding code just get the same level assigned as the last "real"
 * character.
 *
 * Some implementations, not this one, then overwrite some of these
 * directionality properties at "real" same-level-run boundaries by
 * L or R codes so that the resolution of weak types can be performed on the
 * entire paragraph at once instead of having to parse it once more and
 * perform that resolution on same-level-runs.
 * This limits the scope of the implicit rules in effectively
 * the same way as the run limits.
 *
 * Instead, this implementation does not modify these codes.
 * On one hand, the paragraph has to be scanned for same-level-runs, but
 * on the other hand, this saves another loop to reset these codes,
 * or saves making and modifying a copy of dirProps[].
 *
 *
 * Note that (Pn) and (Xn) changed significantly from version 4 of the BiDi algorithm.
 *
 *
 * Handling the stack of explicit levels (Xn):
 *
 * With the BiDi stack of explicit levels,
 * as pushed with each LRE, RLE, LRO, and RLO and popped with each PDF,
 * the explicit level must never exceed UBIDI_MAX_EXPLICIT_LEVEL==61.
 *
 * In order to have a correct push-pop semantics even in the case of overflows,
 * there are two overflow counters:
 * - countOver60 is incremented with each LRx at level 60
 * - from level 60, one RLx increases the level to 61
 * - countOver61 is incremented with each LRx and RLx at level 61
 *
 * Popping levels with PDF must work in the opposite order so that level 61
 * is correct at the correct point. Underflows (too many PDFs) must be checked.
 *
 * This implementation assumes that UBIDI_MAX_EXPLICIT_LEVEL is odd.
 */
static UBiDiDirection
resolveExplicitLevels(UBiDi *pBiDi) {
    const DirProp *dirProps=pBiDi->dirProps;
    UBiDiLevel *levels=pBiDi->levels;
    const UChar *text=pBiDi->text;

    int32_t i=0, length=pBiDi->length;
    Flags flags=pBiDi->flags;       /* collect all directionalities in the text */
    DirProp dirProp;
    UBiDiLevel level=GET_PARALEVEL(pBiDi, 0);

    UBiDiDirection direction;
    int32_t paraIndex=0;

    /* determine if the text is mixed-directional or single-directional */
    direction=directionFromFlags(pBiDi);

    /* we may not need to resolve any explicit levels, but for multiple
       paragraphs we want to loop on all chars to set the para boundaries */
    if((direction!=UBIDI_MIXED) && (pBiDi->paraCount==1)) {
        /* not mixed directionality: levels don't matter - trailingWSStart will be 0 */
    } else if((pBiDi->paraCount==1) &&
              (!(flags&MASK_EXPLICIT) ||
               (pBiDi->reorderingMode > UBIDI_REORDER_LAST_LOGICAL_TO_VISUAL))) {
        /* mixed, but all characters are at the same embedding level */
        /* or we are in "inverse BiDi" */
        /* and we don't have contextual multiple paragraphs with some B char */
        /* set all levels to the paragraph level */
        for(i=0; i<length; ++i) {
            levels[i]=level;
        }
    } else {
        /* continue to perform (Xn) */

        /* (X1) level is set for all codes, embeddingLevel keeps track of the push/pop operations */
        /* both variables may carry the UBIDI_LEVEL_OVERRIDE flag to indicate the override status */
        UBiDiLevel embeddingLevel=level, newLevel, stackTop=0;

        UBiDiLevel stack[UBIDI_MAX_EXPLICIT_LEVEL];        /* we never push anything >=UBIDI_MAX_EXPLICIT_LEVEL */
        uint32_t countOver60=0, countOver61=0;  /* count overflows of explicit levels */

        /* recalculate the flags */
        flags=0;

        for(i=0; i<length; ++i) {
            dirProp=NO_CONTEXT_RTL(dirProps[i]);
            switch(dirProp) {
            case LRE:
            case LRO:
                /* (X3, X5) */
                newLevel=(UBiDiLevel)((embeddingLevel+2)&~(UBIDI_LEVEL_OVERRIDE|1)); /* least greater even level */
                if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
                    stack[stackTop]=embeddingLevel;
                    ++stackTop;
                    embeddingLevel=newLevel;
                    if(dirProp==LRO) {
                        embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
                    }
                    /* we don't need to set UBIDI_LEVEL_OVERRIDE off for LRE
                       since this has already been done for newLevel which is
                       the source for embeddingLevel.
                     */
                } else if((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL) {
                    ++countOver61;
                } else /* (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)==UBIDI_MAX_EXPLICIT_LEVEL-1 */ {
                    ++countOver60;
                }
                flags|=DIRPROP_FLAG(BN);
                break;
            case RLE:
            case RLO:
                /* (X2, X4) */
                newLevel=(UBiDiLevel)(((embeddingLevel&~UBIDI_LEVEL_OVERRIDE)+1)|1); /* least greater odd level */
                if(newLevel<=UBIDI_MAX_EXPLICIT_LEVEL) {
                    stack[stackTop]=embeddingLevel;
                    ++stackTop;
                    embeddingLevel=newLevel;
                    if(dirProp==RLO) {
                        embeddingLevel|=UBIDI_LEVEL_OVERRIDE;
                    }
                    /* we don't need to set UBIDI_LEVEL_OVERRIDE off for RLE
                       since this has already been done for newLevel which is
                       the source for embeddingLevel.
                     */
                } else {
                    ++countOver61;
                }
                flags|=DIRPROP_FLAG(BN);
                break;
            case PDF:
                /* (X7) */
                /* handle all the overflow cases first */
                if(countOver61>0) {
                    --countOver61;
                } else if(countOver60>0 && (embeddingLevel&~UBIDI_LEVEL_OVERRIDE)!=UBIDI_MAX_EXPLICIT_LEVEL) {
                    /* handle LRx overflows from level 60 */
                    --countOver60;
                } else if(stackTop>0) {
                    /* this is the pop operation; it also pops level 61 while countOver60>0 */
                    --stackTop;
                    embeddingLevel=stack[stackTop];
                /* } else { (underflow) */
                }
                flags|=DIRPROP_FLAG(BN);
                break;
            case B:
                stackTop=0;
                countOver60=countOver61=0;
                level=GET_PARALEVEL(pBiDi, i);
                if((i+1)<length) {
                    embeddingLevel=GET_PARALEVEL(pBiDi, i+1);
                    if(!((text[i]==CR) && (text[i+1]==LF))) {
                        pBiDi->paras[paraIndex++]=i+1;
                    }
                }
                flags|=DIRPROP_FLAG(B);
                break;
            case BN:
                /* BN, LRE, RLE, and PDF are supposed to be removed (X9) */
                /* they will get their levels set correctly in adjustWSLevels() */
                flags|=DIRPROP_FLAG(BN);
                break;
            default:
                /* all other types get the "real" level */
                if(level!=embeddingLevel) {
                    level=embeddingLevel;
                    if(level&UBIDI_LEVEL_OVERRIDE) {
                        flags|=DIRPROP_FLAG_O(level)|DIRPROP_FLAG_MULTI_RUNS;
                    } else {
                        flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG_MULTI_RUNS;
                    }
                }
                if(!(level&UBIDI_LEVEL_OVERRIDE)) {
                    flags|=DIRPROP_FLAG(dirProp);
                }
                break;
            }

            /*
             * We need to set reasonable levels even on BN codes and
             * explicit codes because we will later look at same-level runs (X10).
             */
            levels[i]=level;
        }
        if(flags&MASK_EMBEDDING) {
            flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
        }
        if(pBiDi->orderParagraphsLTR && (flags&DIRPROP_FLAG(B))) {
            flags|=DIRPROP_FLAG(L);
        }

        /* subsequently, ignore the explicit codes and BN (X9) */

        /* again, determine if the text is mixed-directional or single-directional */
        pBiDi->flags=flags;
        direction=directionFromFlags(pBiDi);
    }

    return direction;
}

/*
 * Use a pre-specified embedding levels array:
 *
 * Adjust the directional properties for overrides (->LEVEL_OVERRIDE),
 * ignore all explicit codes (X9),
 * and check all the preset levels.
 *
 * Recalculate the flags to have them reflect the real properties
 * after taking the explicit embeddings into account.
 */
static UBiDiDirection
checkExplicitLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) {
    const DirProp *dirProps=pBiDi->dirProps;
    DirProp dirProp;
    UBiDiLevel *levels=pBiDi->levels;
    const UChar *text=pBiDi->text;

    int32_t i, length=pBiDi->length;
    Flags flags=0;  /* collect all directionalities in the text */
    UBiDiLevel level;
    uint32_t paraIndex=0;

    for(i=0; i<length; ++i) {
        level=levels[i];
        dirProp=NO_CONTEXT_RTL(dirProps[i]);
        if(level&UBIDI_LEVEL_OVERRIDE) {
            /* keep the override flag in levels[i] but adjust the flags */
            level&=~UBIDI_LEVEL_OVERRIDE;     /* make the range check below simpler */
            flags|=DIRPROP_FLAG_O(level);
        } else {
            /* set the flags */
            flags|=DIRPROP_FLAG_E(level)|DIRPROP_FLAG(dirProp);
        }
        if((level<GET_PARALEVEL(pBiDi, i) &&
            !((0==level)&&(dirProp==B))) ||
           (UBIDI_MAX_EXPLICIT_LEVEL<level)) {
            /* level out of bounds */
            *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
            return UBIDI_LTR;
        }
        if((dirProp==B) && ((i+1)<length)) {
            if(!((text[i]==CR) && (text[i+1]==LF))) {
                pBiDi->paras[paraIndex++]=i+1;
            }
        }
    }
    if(flags&MASK_EMBEDDING) {
        flags|=DIRPROP_FLAG_LR(pBiDi->paraLevel);
    }

    /* determine if the text is mixed-directional or single-directional */
    pBiDi->flags=flags;
    return directionFromFlags(pBiDi);
}

/*********************************************************************/
/* The Properties state machine table                                */
/*********************************************************************/
/*                                                                   */
/* All table cells are 8 bits:                                       */
/*      bits 0..4:  next state                                       */
/*      bits 5..7:  action to perform (if > 0)                       */
/*                                                                   */
/* Cells may be of format "n" where n represents the next state      */
/* (except for the rightmost column).                                */
/* Cells may also be of format "_(x,y)" where x represents an action */
/* to perform and y represents the next state.                       */
/*                                                                   */
/*********************************************************************/
/* Definitions and type for properties state table                   */
/*********************************************************************/
#define IMPTABPROPS_COLUMNS 14
#define IMPTABPROPS_RES (IMPTABPROPS_COLUMNS - 1)
#define GET_STATEPROPS(cell) ((cell)&0x1f)
#define GET_ACTIONPROPS(cell) ((cell)>>5)
#define _(action, newState) ((uint8_t)(newState+(action<<5)))

static const uint8_t groupProp[] =          /* dirProp regrouped */
{
/*  L   R   EN  ES  ET  AN  CS  B   S   WS  ON  LRE LRO AL  RLE RLO PDF NSM BN  */
    0,  1,  2,  7,  8,  3,  9,  6,  5,  4,  4,  10, 10, 12, 10, 10, 10, 11, 10
};
enum { _L=0, _R=1, _EN=2, _AN=3, _ON=4, _S=5, _B=6 }; /* reduced dirProp */

/*********************************************************************/
/*                                                                   */
/*      PROPERTIES  STATE  TABLE                                     */
/*                                                                   */
/* In table impTabProps,                                             */
/*      - the ON column regroups ON and WS                           */
/*      - the BN column regroups BN, LRE, RLE, LRO, RLO, PDF         */
/*      - the Res column is the reduced property assigned to a run   */
/*                                                                   */
/* Action 1: process current run1, init new run1                     */
/*        2: init new run2                                           */
/*        3: process run1, process run2, init new run1               */
/*        4: process run1, set run1=run2, init new run2              */
/*                                                                   */
/* Notes:                                                            */
/*  1) This table is used in resolveImplicitLevels().                */
/*  2) This table triggers actions when there is a change in the Bidi*/
/*     property of incoming characters (action 1).                                                   */
/*  3) Most such property sequences are processed immediately (in    */
/*     fact, passed to processPropertySeq().                         */
/*  4) However, numbers are assembled as one sequence. This means    */
/*     that undefined situations (like CS following digits, until    */
/*     it is known if the next char will be a digit) are held until  */
/*     following chars define them.                                  */
/*     Example: digits followed by CS, then comes another CS or ON;  */
/*              the digits will be processed, then the CS assigned   */
/*              as the start of an ON sequence (action 3).           */
/*  5) There are cases where more than one sequence must be          */
/*     processed, for instance digits followed by CS followed by L:  */
/*     the digits must be processed as one sequence, and the CS      */
/*     must be processed as an ON sequence, all this before starting */
/*     assembling chars for the opening L sequence.                  */
/*                                                                   */
/*                                                                   */
static const uint8_t impTabProps[][IMPTABPROPS_COLUMNS] =
{
/*                        L ,     R ,    EN ,    AN ,    ON ,     S ,     B ,    ES ,    ET ,    CS ,    BN ,   NSM ,    AL ,  Res */
/* 0 Init        */ {     1 ,     2 ,     4 ,     5 ,     7 ,    15 ,    17 ,     7 ,     9 ,     7 ,     0 ,     7 ,     3 ,  _ON },
/* 1 L           */ {     1 , _(1,2), _(1,4), _(1,5), _(1,7),_(1,15),_(1,17), _(1,7), _(1,9), _(1,7),     1 ,     1 , _(1,3),   _L },
/* 2 R           */ { _(1,1),     2 , _(1,4), _(1,5), _(1,7),_(1,15),_(1,17), _(1,7), _(1,9), _(1,7),     2 ,     2 , _(1,3),   _R },
/* 3 AL          */ { _(1,1), _(1,2), _(1,6), _(1,6), _(1,8),_(1,16),_(1,17), _(1,8), _(1,8), _(1,8),     3 ,     3 ,     3 ,   _R },
/* 4 EN          */ { _(1,1), _(1,2),     4 , _(1,5), _(1,7),_(1,15),_(1,17),_(2,10),    11 ,_(2,10),     4 ,     4 , _(1,3),  _EN },
/* 5 AN          */ { _(1,1), _(1,2), _(1,4),     5 , _(1,7),_(1,15),_(1,17), _(1,7), _(1,9),_(2,12),     5 ,     5 , _(1,3),  _AN },
/* 6 AL:EN/AN    */ { _(1,1), _(1,2),     6 ,     6 , _(1,8),_(1,16),_(1,17), _(1,8), _(1,8),_(2,13),     6 ,     6 , _(1,3),  _AN },
/* 7 ON          */ { _(1,1), _(1,2), _(1,4), _(1,5),     7 ,_(1,15),_(1,17),     7 ,_(2,14),     7 ,     7 ,     7 , _(1,3),  _ON },
/* 8 AL:ON       */ { _(1,1), _(1,2), _(1,6), _(1,6),     8 ,_(1,16),_(1,17),     8 ,     8 ,     8 ,     8 ,     8 , _(1,3),  _ON },
/* 9 ET          */ { _(1,1), _(1,2),     4 , _(1,5),     7 ,_(1,15),_(1,17),     7 ,     9 ,     7 ,     9 ,     9 , _(1,3),  _ON },
/*10 EN+ES/CS    */ { _(3,1), _(3,2),     4 , _(3,5), _(4,7),_(3,15),_(3,17), _(4,7),_(4,14), _(4,7),    10 , _(4,7), _(3,3),  _EN },
/*11 EN+ET       */ { _(1,1), _(1,2),     4 , _(1,5), _(1,7),_(1,15),_(1,17), _(1,7),    11 , _(1,7),    11 ,    11 , _(1,3),  _EN },
/*12 AN+CS       */ { _(3,1), _(3,2), _(3,4),     5 , _(4,7),_(3,15),_(3,17), _(4,7),_(4,14), _(4,7),    12 , _(4,7), _(3,3),  _AN },
/*13 AL:EN/AN+CS */ { _(3,1), _(3,2),     6 ,     6 , _(4,8),_(3,16),_(3,17), _(4,8), _(4,8), _(4,8),    13 , _(4,8), _(3,3),  _AN },
/*14 ON+ET       */ { _(1,1), _(1,2), _(4,4), _(1,5),     7 ,_(1,15),_(1,17),     7 ,    14 ,     7 ,    14 ,    14 , _(1,3),  _ON },
/*15 S           */ { _(1,1), _(1,2), _(1,4), _(1,5), _(1,7),    15 ,_(1,17), _(1,7), _(1,9), _(1,7),    15 , _(1,7), _(1,3),   _S },
/*16 AL:S        */ { _(1,1), _(1,2), _(1,6), _(1,6), _(1,8),    16 ,_(1,17), _(1,8), _(1,8), _(1,8),    16 , _(1,8), _(1,3),   _S },
/*17 B           */ { _(1,1), _(1,2), _(1,4), _(1,5), _(1,7),_(1,15),    17 , _(1,7), _(1,9), _(1,7),    17 , _(1,7), _(1,3),   _B }
};

/*  we must undef macro _ because the levels table have a different
 *  structure (4 bits for action and 4 bits for next state.
 */
#undef _

/*********************************************************************/
/* The levels state machine tables                                   */
/*********************************************************************/
/*                                                                   */
/* All table cells are 8 bits:                                       */
/*      bits 0..3:  next state                                       */
/*      bits 4..7:  action to perform (if > 0)                       */
/*                                                                   */
/* Cells may be of format "n" where n represents the next state      */
/* (except for the rightmost column).                                */
/* Cells may also be of format "_(x,y)" where x represents an action */
/* to perform and y represents the next state.                       */
/*                                                                   */
/* This format limits each table to 16 states each and to 15 actions.*/
/*                                                                   */
/*********************************************************************/
/* Definitions and type for levels state tables                      */
/*********************************************************************/
#define IMPTABLEVELS_COLUMNS (_B + 2)
#define IMPTABLEVELS_RES (IMPTABLEVELS_COLUMNS - 1)
#define GET_STATE(cell) ((cell)&0x0f)
#define GET_ACTION(cell) ((cell)>>4)
#define _(action, newState) ((uint8_t)(newState+(action<<4)))

typedef uint8_t ImpTab[][IMPTABLEVELS_COLUMNS];
typedef uint8_t ImpAct[];

/* FOOD FOR THOUGHT: each ImpTab should have its associated ImpAct,
 * instead of having a pair of ImpTab and a pair of ImpAct.
 */
typedef struct ImpTabPair {
    ImpTab * pImpTab[2];
    ImpAct * pImpAct[2];
} ImpTabPair;

/*********************************************************************/
/*                                                                   */
/*      LEVELS  STATE  TABLES                                        */
/*                                                                   */
/* In all levels state tables,                                       */
/*      - state 0 is the initial state                               */
/*      - the Res column is the increment to add to the text level   */
/*        for this property sequence.                                */
/*                                                                   */
/* The impAct arrays for each table of a pair map the local action   */
/* numbers of the table to the total list of actions. For instance,  */
/* action 2 in a given table corresponds to the action number which  */
/* appears in entry [2] of the impAct array for that table.          */
/* The first entry of all impAct arrays must be 0.                   */
/*                                                                   */
/* Action 1: init conditional sequence                               */
/*        2: prepend conditional sequence to current sequence        */
/*        3: set ON sequence to new level - 1                        */
/*        4: init EN/AN/ON sequence                                  */
/*        5: fix EN/AN/ON sequence followed by R                     */
/*        6: set previous level sequence to level 2                  */
/*                                                                   */
/* Notes:                                                            */
/*  1) These tables are used in processPropertySeq(). The input      */
/*     is property sequences as determined by resolveImplicitLevels. */
/*  2) Most such property sequences are processed immediately        */
/*     (levels are assigned).                                        */
/*  3) However, some sequences cannot be assigned a final level till */
/*     one or more following sequences are received. For instance,   */
/*     ON following an R sequence within an even-level paragraph.    */
/*     If the following sequence is R, the ON sequence will be       */
/*     assigned basic run level+1, and so will the R sequence.       */
/*  4) S is generally handled like ON, since its level will be fixed */
/*     to paragraph level in adjustWSLevels().                       */
/*                                                                   */

static const ImpTab impTabL_DEFAULT =   /* Even paragraph level */
/*  In this table, conditional sequences receive the higher possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 ,     1 ,     0 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : R          */ {     0 ,     1 ,     3 ,     3 , _(1,4), _(1,4),     0 ,  1 },
/* 2 : AN         */ {     0 ,     1 ,     0 ,     2 , _(1,5), _(1,5),     0 ,  2 },
/* 3 : R+EN/AN    */ {     0 ,     1 ,     3 ,     3 , _(1,4), _(1,4),     0 ,  2 },
/* 4 : R+ON       */ { _(2,0),     1 ,     3 ,     3 ,     4 ,     4 , _(2,0),  1 },
/* 5 : AN+ON      */ { _(2,0),     1 , _(2,0),     2 ,     5 ,     5 , _(2,0),  1 }
};
static const ImpTab impTabR_DEFAULT =   /* Odd  paragraph level */
/*  In this table, conditional sequences receive the lower possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L          */ {     1 ,     0 ,     1 ,     3 , _(1,4), _(1,4),     0 ,  1 },
/* 2 : EN/AN      */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  1 },
/* 3 : L+AN       */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  1 },
/* 4 : L+ON       */ { _(2,1),     0 , _(2,1),     3 ,     4 ,     4 ,     0 ,  0 },
/* 5 : L+AN+ON    */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  0 }
};
static const ImpAct impAct0 = {0,1,2,3,4,5,6};
static const ImpTabPair impTab_DEFAULT = {{(ImpTab*)&impTabL_DEFAULT,
                                           (ImpTab*)&impTabR_DEFAULT},
                                          {(ImpAct*)&impAct0, (ImpAct*)&impAct0}};

static const ImpTab impTabL_NUMBERS_SPECIAL =   /* Even paragraph level */
/*  In this table, conditional sequences receive the higher possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 ,     2 ,    1 ,      1 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L+EN/AN    */ {     0 ,     2 ,    1 ,      1 ,     0 ,     0 ,     0 ,  2 },
/* 2 : R          */ {     0 ,     2 ,    4 ,      4 , _(1,3),     0 ,     0 ,  1 },
/* 3 : R+ON       */ { _(2,0),     2 ,    4 ,      4 ,     3 ,     3 , _(2,0),  1 },
/* 4 : R+EN/AN    */ {     0 ,     2 ,    4 ,      4 , _(1,3), _(1,3),     0 ,  2 }
  };
static const ImpTabPair impTab_NUMBERS_SPECIAL = {{(ImpTab*)&impTabL_NUMBERS_SPECIAL,
                                                   (ImpTab*)&impTabR_DEFAULT},
                                                  {(ImpAct*)&impAct0, (ImpAct*)&impAct0}};

static const ImpTab impTabL_GROUP_NUMBERS_WITH_R =
/*  In this table, EN/AN+ON sequences receive levels as if associated with R
    until proven that there is L or sor/eor on both sides. AN is handled like EN.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 init         */ {     0 ,     3 , _(1,1), _(1,1),     0 ,     0 ,     0 ,  0 },
/* 1 EN/AN        */ { _(2,0),     3 ,     1 ,     1 ,     2 , _(2,0), _(2,0),  2 },
/* 2 EN/AN+ON     */ { _(2,0),     3 ,     1 ,     1 ,     2 , _(2,0), _(2,0),  1 },
/* 3 R            */ {     0 ,     3 ,     5 ,     5 , _(1,4),     0 ,     0 ,  1 },
/* 4 R+ON         */ { _(2,0),     3 ,     5 ,     5 ,     4 , _(2,0), _(2,0),  1 },
/* 5 R+EN/AN      */ {     0 ,     3 ,     5 ,     5 , _(1,4),     0 ,     0 ,  2 }
};
static const ImpTab impTabR_GROUP_NUMBERS_WITH_R =
/*  In this table, EN/AN+ON sequences receive levels as if associated with R
    until proven that there is L on both sides. AN is handled like EN.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 init         */ {     2 ,     0 ,     1 ,     1 ,     0 ,     0 ,     0 ,  0 },
/* 1 EN/AN        */ {     2 ,     0 ,     1 ,     1 ,     0 ,     0 ,     0 ,  1 },
/* 2 L            */ {     2 ,     0 , _(1,4), _(1,4), _(1,3),     0 ,     0 ,  1 },
/* 3 L+ON         */ { _(2,2),     0 ,     4 ,     4 ,     3 ,     0 ,     0 ,  0 },
/* 4 L+EN/AN      */ { _(2,2),     0 ,     4 ,     4 ,     3 ,     0 ,     0 ,  1 }
};
static const ImpTabPair impTab_GROUP_NUMBERS_WITH_R = {
                        {(ImpTab*)&impTabL_GROUP_NUMBERS_WITH_R,
                         (ImpTab*)&impTabR_GROUP_NUMBERS_WITH_R},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct0}};


static const ImpTab impTabL_INVERSE_NUMBERS_AS_L =
/*  This table is identical to the Default LTR table except that EN and AN are
    handled like L.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 ,     1 ,     0 ,     0 ,     0 ,     0 ,     0 ,  0 },
/* 1 : R          */ {     0 ,     1 ,     0 ,     0 , _(1,4), _(1,4),     0 ,  1 },
/* 2 : AN         */ {     0 ,     1 ,     0 ,     0 , _(1,5), _(1,5),     0 ,  2 },
/* 3 : R+EN/AN    */ {     0 ,     1 ,     0 ,     0 , _(1,4), _(1,4),     0 ,  2 },
/* 4 : R+ON       */ { _(2,0),     1 , _(2,0), _(2,0),     4 ,     4 , _(2,0),  1 },
/* 5 : AN+ON      */ { _(2,0),     1 , _(2,0), _(2,0),     5 ,     5 , _(2,0),  1 }
};
static const ImpTab impTabR_INVERSE_NUMBERS_AS_L =
/*  This table is identical to the Default RTL table except that EN and AN are
    handled like L.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     1 ,     0 ,     1 ,     1 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L          */ {     1 ,     0 ,     1 ,     1 , _(1,4), _(1,4),     0 ,  1 },
/* 2 : EN/AN      */ {     1 ,     0 ,     1 ,     1 ,     0 ,     0 ,     0 ,  1 },
/* 3 : L+AN       */ {     1 ,     0 ,     1 ,     1 ,     5 ,     5 ,     0 ,  1 },
/* 4 : L+ON       */ { _(2,1),     0 , _(2,1), _(2,1),     4 ,     4 ,     0 ,  0 },
/* 5 : L+AN+ON    */ {     1 ,     0 ,     1 ,     1 ,     5 ,     5 ,     0 ,  0 }
};
static const ImpTabPair impTab_INVERSE_NUMBERS_AS_L = {
                        {(ImpTab*)&impTabL_INVERSE_NUMBERS_AS_L,
                         (ImpTab*)&impTabR_INVERSE_NUMBERS_AS_L},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct0}};

static const ImpTab impTabR_INVERSE_LIKE_DIRECT =   /* Odd  paragraph level */
/*  In this table, conditional sequences receive the lower possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L          */ {     1 ,     0 ,     1 ,     2 , _(1,3), _(1,3),     0 ,  1 },
/* 2 : EN/AN      */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  1 },
/* 3 : L+ON       */ { _(2,1), _(3,0),     6 ,     4 ,     3 ,     3 , _(3,0),  0 },
/* 4 : L+ON+AN    */ { _(2,1), _(3,0),     6 ,     4 ,     5 ,     5 , _(3,0),  3 },
/* 5 : L+AN+ON    */ { _(2,1), _(3,0),     6 ,     4 ,     5 ,     5 , _(3,0),  2 },
/* 6 : L+ON+EN    */ { _(2,1), _(3,0),     6 ,     4 ,     3 ,     3 , _(3,0),  1 }
};
static const ImpAct impAct1 = {0,1,11,12};
/* FOOD FOR THOUGHT: in LTR table below, check case "JKL 123abc"
 */
static const ImpTabPair impTab_INVERSE_LIKE_DIRECT = {
                        {(ImpTab*)&impTabL_DEFAULT,
                         (ImpTab*)&impTabR_INVERSE_LIKE_DIRECT},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct1}};

static const ImpTab impTabL_INVERSE_LIKE_DIRECT_WITH_MARKS =
/*  The case handled in this table is (visually):  R EN L
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 , _(6,3),     0 ,     1 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L+AN       */ {     0 , _(6,3),     0 ,     1 , _(1,2), _(3,0),     0 ,  4 },
/* 2 : L+AN+ON    */ { _(2,0), _(6,3), _(2,0),     1 ,     2 , _(3,0), _(2,0),  3 },
/* 3 : R          */ {     0 , _(6,3), _(5,5), _(5,6), _(1,4), _(3,0),     0 ,  3 },
/* 4 : R+ON       */ { _(3,0), _(4,3), _(5,5), _(5,6),     4 , _(3,0), _(3,0),  3 },
/* 5 : R+EN       */ { _(3,0), _(4,3),     5 , _(5,6), _(1,4), _(3,0), _(3,0),  4 },
/* 6 : R+AN       */ { _(3,0), _(4,3), _(5,5),     6 , _(1,4), _(3,0), _(3,0),  4 }
};
static const ImpTab impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS =
/*  The cases handled in this table are (visually):  R EN L
                                                     R L AN L
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ { _(1,3),     0 ,     1 ,     1 ,     0 ,     0 ,     0 ,  0 },
/* 1 : R+EN/AN    */ { _(2,3),     0 ,     1 ,     1 ,     2 , _(4,0),     0 ,  1 },
/* 2 : R+EN/AN+ON */ { _(2,3),     0 ,     1 ,     1 ,     2 , _(4,0),     0 ,  0 },
/* 3 : L          */ {     3 ,     0 ,     3 , _(3,6), _(1,4), _(4,0),     0 ,  1 },
/* 4 : L+ON       */ { _(5,3), _(4,0),     5 , _(3,6),     4 , _(4,0), _(4,0),  0 },
/* 5 : L+ON+EN    */ { _(5,3), _(4,0),     5 , _(3,6),     4 , _(4,0), _(4,0),  1 },
/* 6 : L+AN       */ { _(5,3), _(4,0),     6 ,     6 ,     4 , _(4,0), _(4,0),  3 }
};
static const ImpAct impAct2 = {0,1,7,8,9,10};
static const ImpTabPair impTab_INVERSE_LIKE_DIRECT_WITH_MARKS = {
                        {(ImpTab*)&impTabL_INVERSE_LIKE_DIRECT_WITH_MARKS,
                         (ImpTab*)&impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct2}};

static const ImpTabPair impTab_INVERSE_FOR_NUMBERS_SPECIAL = {
                        {(ImpTab*)&impTabL_NUMBERS_SPECIAL,
                         (ImpTab*)&impTabR_INVERSE_LIKE_DIRECT},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct1}};

static const ImpTab impTabL_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS =
/*  The case handled in this table is (visually):  R EN L
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 , _(6,2),     1 ,     1 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L+EN/AN    */ {     0 , _(6,2),     1 ,     1 ,     0 , _(3,0),     0 ,  4 },
/* 2 : R          */ {     0 , _(6,2), _(5,4), _(5,4), _(1,3), _(3,0),     0 ,  3 },
/* 3 : R+ON       */ { _(3,0), _(4,2), _(5,4), _(5,4),     3 , _(3,0), _(3,0),  3 },
/* 4 : R+EN/AN    */ { _(3,0), _(4,2),     4 ,     4 , _(1,3), _(3,0), _(3,0),  4 }
};
static const ImpTabPair impTab_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS = {
                        {(ImpTab*)&impTabL_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS,
                         (ImpTab*)&impTabR_INVERSE_LIKE_DIRECT_WITH_MARKS},
                        {(ImpAct*)&impAct0, (ImpAct*)&impAct2}};

#undef _

typedef struct {
    ImpTab * pImpTab;                   /* level table pointer          */
    ImpAct * pImpAct;                   /* action map array             */
    int32_t startON;                    /* start of ON sequence         */
    int32_t startL2EN;                  /* start of level 2 sequence    */
    int32_t lastStrongRTL;              /* index of last found R or AL  */
    int32_t state;                      /* current state                */
    UBiDiLevel runLevel;                /* run level before implicit solving */
} LevState;

/*------------------------------------------------------------------------*/

static void
addPoint(UBiDi *pBiDi, int32_t pos, int32_t flag)
  /* param pos:     position where to insert
     param flag:    one of LRM_BEFORE, LRM_AFTER, RLM_BEFORE, RLM_AFTER
  */
{
#define FIRSTALLOC  10
    Point point;
    InsertPoints * pInsertPoints=&(pBiDi->insertPoints);

    if (pInsertPoints->capacity == 0)
    {
        pInsertPoints->points=uprv_malloc(sizeof(Point)*FIRSTALLOC);
        if (pInsertPoints->points == NULL)
        {
            pInsertPoints->errorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        pInsertPoints->capacity=FIRSTALLOC;
    }
    if (pInsertPoints->size >= pInsertPoints->capacity) /* no room for new point */
    {
        void * savePoints=pInsertPoints->points;
        pInsertPoints->points=uprv_realloc(pInsertPoints->points,
                                           pInsertPoints->capacity*2*sizeof(Point));
        if (pInsertPoints->points == NULL)
        {
            pInsertPoints->points=savePoints;
            pInsertPoints->errorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }
        else  pInsertPoints->capacity*=2;
    }
    point.pos=pos;
    point.flag=flag;
    pInsertPoints->points[pInsertPoints->size]=point;
    pInsertPoints->size++;
#undef FIRSTALLOC
}

/* perform rules (Wn), (Nn), and (In) on a run of the text ------------------ */

/*
 * This implementation of the (Wn) rules applies all rules in one pass.
 * In order to do so, it needs a look-ahead of typically 1 character
 * (except for W5: sequences of ET) and keeps track of changes
 * in a rule Wp that affect a later Wq (p<q).
 *
 * The (Nn) and (In) rules are also performed in that same single loop,
 * but effectively one iteration behind for white space.
 *
 * Since all implicit rules are performed in one step, it is not necessary
 * to actually store the intermediate directional properties in dirProps[].
 */

static void
processPropertySeq(UBiDi *pBiDi, LevState *pLevState, uint8_t _prop,
                   int32_t start, int32_t limit) {
    uint8_t cell, oldStateSeq, actionSeq;
    ImpTab * pImpTab=pLevState->pImpTab;
    ImpAct * pImpAct=pLevState->pImpAct;
    UBiDiLevel * levels=pBiDi->levels;
    UBiDiLevel level, addLevel;
    InsertPoints * pInsertPoints;
    int32_t start0, k;

    start0=start;                           /* save original start position */
    oldStateSeq=pLevState->state;
    cell=(*pImpTab)[oldStateSeq][_prop];
    pLevState->state=GET_STATE(cell);       /* isolate the new state */
    actionSeq=(*pImpAct)[GET_ACTION(cell)]; /* isolate the action */
    addLevel=(*pImpTab)[pLevState->state][IMPTABLEVELS_RES];

    if(actionSeq) {
        switch(actionSeq) {
        case 1:                         /* init ON seq */
            pLevState->startON=start0;
            break;

        case 2:                         /* prepend ON seq to current seq */
            start=pLevState->startON;
            break;

        case 3:                         /* L or S after possible relevant EN/AN */
            /* check if we had EN after R/AL */
            if (pLevState->startL2EN >= 0) {
                addPoint(pBiDi, pLevState->startL2EN, LRM_BEFORE);
            }
            pLevState->startL2EN=-1;  /* not within previous if since could also be -2 */
            /* check if we had any relevant EN/AN after R/AL */
            pInsertPoints=&(pBiDi->insertPoints);
            if ((pInsertPoints->capacity == 0) ||
                (pInsertPoints->size <= pInsertPoints->confirmed))
            {
                /* nothing, just clean up */
                pLevState->lastStrongRTL=-1;
                /* check if we have a pending conditional segment */
                level=(*pImpTab)[oldStateSeq][IMPTABLEVELS_RES];
                if ((level & 1) && (pLevState->startON > 0)) {  /* after ON */
                    start=pLevState->startON;   /* reset to basic run level */
                }
                if (_prop == _S)                /* add LRM before S */
                {
                    addPoint(pBiDi, start0, LRM_BEFORE);
                    pInsertPoints->confirmed=pInsertPoints->size;
                }
                break;
            }
            /* reset previous RTL cont to level for LTR text */
            for (k=pLevState->lastStrongRTL+1; k<start0; k++)
            {
                /* reset odd level, leave runLevel+2 as is */
                levels[k]=(levels[k] - 2) & ~1;
            }
            /* mark insert points as confirmed */
            pInsertPoints->confirmed=pInsertPoints->size;
            pLevState->lastStrongRTL=-1;
            if (_prop == _S)            /* add LRM before S */
            {
                addPoint(pBiDi, start0, LRM_BEFORE);
                pInsertPoints->confirmed=pInsertPoints->size;
            }
            break;

        case 4:                         /* R/AL after possible relevant EN/AN */
            /* just clean up */
            pInsertPoints=&(pBiDi->insertPoints);
            if (pInsertPoints->capacity > 0)
                /* remove all non confirmed insert points */
                pInsertPoints->size=pInsertPoints->confirmed;
            pLevState->startON=-1;
            pLevState->startL2EN=-1;
            pLevState->lastStrongRTL=limit - 1;
            break;

        case 5:                         /* EN/AN after R/AL + possible cont */
            /* check for real AN */
            if ((_prop == _AN) && (NO_CONTEXT_RTL(pBiDi->dirProps[start0]) == AN) &&
                (pBiDi->reorderingMode!=UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL))
            {
                /* real AN */
                if (pLevState->startL2EN == -1) /* if no relevant EN already found */
                {
                    /* just note the righmost digit as a strong RTL */
                    pLevState->lastStrongRTL=limit - 1;
                    break;
                }
                if (pLevState->startL2EN >= 0)  /* after EN, no AN */
                {
                    addPoint(pBiDi, pLevState->startL2EN, LRM_BEFORE);
                    pLevState->startL2EN=-2;
                }
                /* note AN */
                addPoint(pBiDi, start0, LRM_BEFORE);
                break;
            }
            /* if first EN/AN after R/AL */
            if (pLevState->startL2EN == -1) {
                pLevState->startL2EN=start0;
            }
            break;

        case 6:                         /* note location of latest R/AL */
            pLevState->lastStrongRTL=limit - 1;
            pLevState->startON=-1;
            break;

        case 7:                         /* L after R+ON/EN/AN */
            /* include possible adjacent number on the left */
            for (k=start0-1; k>=0 && !(levels[k]&1); k--);
            if(k>=0) {
                addPoint(pBiDi, k, RLM_BEFORE);             /* add RLM before */
                pInsertPoints=&(pBiDi->insertPoints);
                pInsertPoints->confirmed=pInsertPoints->size;   /* confirm it */
            }
            pLevState->startON=start0;
            break;

        case 8:                         /* AN after L */
            /* AN numbers between L text on both sides may be trouble. */
            /* tentatively bracket with LRMs; will be confirmed if followed by L */
            addPoint(pBiDi, start0, LRM_BEFORE);    /* add LRM before */
            addPoint(pBiDi, start0, LRM_AFTER);     /* add LRM after  */
            break;

        case 9:                         /* R after L+ON/EN/AN */
            /* false alert, infirm LRMs around previous AN */
            pInsertPoints=&(pBiDi->insertPoints);
            pInsertPoints->size=pInsertPoints->confirmed;
            if (_prop == _S)            /* add RLM before S */
            {
                addPoint(pBiDi, start0, RLM_BEFORE);
                pInsertPoints->confirmed=pInsertPoints->size;
            }
            break;

        case 10:                        /* L after L+ON/AN */
            level=pLevState->runLevel + addLevel;
            for(k=pLevState->startON; k<start0; k++) {
                if (levels[k]<level)
                    levels[k]=level;
            }
            pInsertPoints=&(pBiDi->insertPoints);
            pInsertPoints->confirmed=pInsertPoints->size;   /* confirm inserts */
            pLevState->startON=start0;
            break;

        case 11:                        /* L after L+ON+EN/AN/ON */
            level=pLevState->runLevel;
            for(k=start0-1; k>=pLevState->startON; k--) {
                if(levels[k]==level+3) {
                    while(levels[k]==level+3) {
                        levels[k--]-=2;
                    }
                    while(levels[k]==level) {
                        k--;
                    }
                }
                if(levels[k]==level+2) {
                    levels[k]=level;
                    continue;
                }
                levels[k]=level+1;
            }
            break;

        case 12:                        /* R after L+ON+EN/AN/ON */
            level=pLevState->runLevel+1;
            for(k=start0-1; k>=pLevState->startON; k--) {
                if(levels[k]>level) {
                    levels[k]-=2;
                }
            }
            break;

        default:                        /* we should never get here */
            start=start0+25;
            start/=(start-start0-25);   /* force program crash */
            break;
        }
    }
    if((addLevel) || (start < start0)) {
        level=pLevState->runLevel + addLevel;
        for(k=start; k<limit; k++) {
            levels[k]=level;
        }
    }
}

static void
resolveImplicitLevels(UBiDi *pBiDi,
                      int32_t start, int32_t limit,
                      DirProp sor, DirProp eor) {
    const DirProp *dirProps=pBiDi->dirProps;

    LevState levState;
    int32_t i, start1, start2;
    uint8_t oldStateImp, stateImp, actionImp;
    uint8_t gprop, resProp, cell;
    UBool inverseRTL;
    DirProp nextStrongProp=R;
    int32_t nextStrongPos=-1;

    /* check for RTL inverse BiDi mode */
    /* FOOD FOR THOUGHT: in case of RTL inverse BiDi, it would make sense to
     * loop on the text characters from end to start.
     * This would need a different properties state table (at least different
     * actions) and different levels state tables (maybe very similar to the
     * LTR corresponding ones.
     */
    inverseRTL=((start<pBiDi->lastArabicPos) && (GET_PARALEVEL(pBiDi, start) & 1) &&
                (pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_LIKE_DIRECT  ||
                 pBiDi->reorderingMode==UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL));
    /* initialize for levels state table */
    levState.startL2EN=-1;              /* used for INVERSE_LIKE_DIRECT_WITH_MARKS */
    levState.lastStrongRTL=-1;          /* used for INVERSE_LIKE_DIRECT_WITH_MARKS */
    levState.state=0;
    levState.runLevel=pBiDi->levels[start];
    levState.pImpTab=((pBiDi->pImpTabPair)->pImpTab)[levState.runLevel&1];
    levState.pImpAct=((pBiDi->pImpTabPair)->pImpAct)[levState.runLevel&1];
    processPropertySeq(pBiDi, &levState, sor, start, start);
    /* initialize for property state table */
    if(dirProps[start]==NSM) {
        stateImp = 1 + sor;
    } else {
        stateImp=0;
    }
    start1=start;
    start2=start;

    for(i=start; i<=limit; i++) {
        if(i>=limit) {
            gprop=eor;
        } else {
            DirProp prop, prop1;
            prop=NO_CONTEXT_RTL(dirProps[i]);
            if(inverseRTL) {
                if(prop==AL) {
                    /* AL before EN does not make it AN */
                    prop=R;
                } else if(prop==EN) {
                    if(nextStrongPos<=i) {
                        /* look for next strong char (L/R/AL) */
                        int32_t j;
                        nextStrongProp=R;   /* set default */
                        nextStrongPos=limit;
                        for(j=i+1; j<limit; j++) {
                            prop1=NO_CONTEXT_RTL(dirProps[j]);
                            if(prop1==L || prop1==R || prop1==AL) {
                                nextStrongProp=prop1;
                                nextStrongPos=j;
                                break;
                            }
                        }
                    }
                    if(nextStrongProp==AL) {
                        prop=AN;
                    }
                }
            }
            gprop=groupProp[prop];
        }
        oldStateImp=stateImp;
        cell=impTabProps[oldStateImp][gprop];
        stateImp=GET_STATEPROPS(cell);      /* isolate the new state */
        actionImp=GET_ACTIONPROPS(cell);    /* isolate the action */
        if((i==limit) && (actionImp==0)) {
            /* there is an unprocessed sequence if its property == eor   */
            actionImp=1;                    /* process the last sequence */
        }
        if(actionImp) {
            resProp=impTabProps[oldStateImp][IMPTABPROPS_RES];
            switch(actionImp) {
            case 1:             /* process current seq1, init new seq1 */
                processPropertySeq(pBiDi, &levState, resProp, start1, i);
                start1=i;
                break;
            case 2:             /* init new seq2 */
                start2=i;
                break;
            case 3:             /* process seq1, process seq2, init new seq1 */
                processPropertySeq(pBiDi, &levState, resProp, start1, start2);
                processPropertySeq(pBiDi, &levState, _ON, start2, i);
                start1=i;
                break;
            case 4:             /* process seq1, set seq1=seq2, init new seq2 */
                processPropertySeq(pBiDi, &levState, resProp, start1, start2);
                start1=start2;
                start2=i;
                break;
            default:            /* we should never get here */
                start=start1+25;
                start/=(start-start1-25);   /* force program crash */
                break;
            }
        }
    }
    /* flush possible pending sequence, e.g. ON */
    processPropertySeq(pBiDi, &levState, eor, limit, limit);
}

/* perform (L1) and (X9) ---------------------------------------------------- */

/*
 * Reset the embedding levels for some non-graphic characters (L1).
 * This function also sets appropriate levels for BN, and
 * explicit embedding types that are supposed to have been removed
 * from the paragraph in (X9).
 */
static void
adjustWSLevels(UBiDi *pBiDi) {
    const DirProp *dirProps=pBiDi->dirProps;
    UBiDiLevel *levels=pBiDi->levels;
    int32_t i;

    if(pBiDi->flags&MASK_WS) {
        UBool orderParagraphsLTR=pBiDi->orderParagraphsLTR;
        Flags flag;

        i=pBiDi->trailingWSStart;
        while(i>0) {
            /* reset a sequence of WS/BN before eop and B/S to the paragraph paraLevel */
            while(i>0 && (flag=DIRPROP_FLAG_NC(dirProps[--i]))&MASK_WS) {
                if(orderParagraphsLTR&&(flag&DIRPROP_FLAG(B))) {
                    levels[i]=0;
                } else {
                    levels[i]=GET_PARALEVEL(pBiDi, i);
                }
            }

            /* reset BN to the next character's paraLevel until B/S, which restarts above loop */
            /* here, i+1 is guaranteed to be <length */
            while(i>0) {
                flag=DIRPROP_FLAG_NC(dirProps[--i]);
                if(flag&MASK_BN_EXPLICIT) {
                    levels[i]=levels[i+1];
                } else if(orderParagraphsLTR&&(flag&DIRPROP_FLAG(B))) {
                    levels[i]=0;
                    break;
                } else if(flag&MASK_B_S) {
                    levels[i]=GET_PARALEVEL(pBiDi, i);
                    break;
                }
            }
        }
    }
}

#define BIDI_MIN(x, y)   ((x)<(y) ? (x) : (y))
#define BIDI_ABS(x)      ((x)>=0  ? (x) : (-(x)))
static void
setParaRunsOnly(UBiDi *pBiDi, const UChar *text, int32_t length,
                UBiDiLevel paraLevel, UErrorCode *pErrorCode) {
    void *runsOnlyMemory;
    int32_t *visualMap;
    UChar *visualText;
    const UBiDiLevel *levels;
    UBiDiLevel *saveLevels;
    Run *runs;
    int32_t visualLength, i, j, visualStart, logicalStart,
            runCount, runLength, addedRuns, insertRemove,
            start, limit, step, indexOddBit, logicalPos,
            index, index1;
    uint32_t saveOptions;

    pBiDi->reorderingMode=UBIDI_REORDER_DEFAULT;
    if(length==0) {
        ubidi_setPara(pBiDi, text, length, paraLevel, NULL, pErrorCode);
        goto cleanup3;
    }
    /* obtain memory for mapping table and visual text */
    runsOnlyMemory=uprv_malloc(length*(sizeof(int32_t)+sizeof(UChar)+sizeof(UBiDiLevel)));
    if(runsOnlyMemory==NULL) {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        goto cleanup3;
    }
    visualMap=runsOnlyMemory;
    visualText=(UChar *)&visualMap[length];
    saveLevels=(UBiDiLevel *)&visualText[length];
    saveOptions=pBiDi->reorderingOptions;
    if(saveOptions & UBIDI_OPTION_INSERT_MARKS) {
        pBiDi->reorderingOptions&=~UBIDI_OPTION_INSERT_MARKS;
        pBiDi->reorderingOptions|=UBIDI_OPTION_REMOVE_CONTROLS;
    }
    ubidi_setPara(pBiDi, text, length, paraLevel, NULL, pErrorCode);
    levels=ubidi_getLevels(pBiDi, pErrorCode);

    /* FOOD FOR THOUGHT: instead of writing the visual text, we could use
     * the visual map and the dirProps array to drive the second call
     * to ubidi_setPara (but must make provision for possible removal of
     * BiDi controls.  Alternatively, only use the dirProps array via
     * customized classifier callback.
     */
    visualLength=ubidi_writeReordered(pBiDi, visualText, length,
                                      UBIDI_DO_MIRRORING, pErrorCode);
    pBiDi->reorderingOptions=saveOptions;
    ubidi_getVisualMap(pBiDi, visualMap, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        goto cleanup2;
    }
    uprv_memcpy(saveLevels, levels, length*sizeof(UBiDiLevel));

    pBiDi->reorderingMode=UBIDI_REORDER_INVERSE_LIKE_DIRECT;
    paraLevel=pBiDi->paraLevel^1;
    ubidi_setPara(pBiDi, visualText, visualLength, paraLevel, NULL, pErrorCode);
    if(U_FAILURE(*pErrorCode)) {
        goto cleanup1;
    }
    ubidi_getRuns(pBiDi);
    /* check if some runs must be split, count how many splits */
    addedRuns=0;
    runCount=pBiDi->runCount;
    runs=pBiDi->runs;
    visualStart=0;
    for(i=0; i<runCount; i++, visualStart+=runLength) {
        runLength=runs[i].visualLimit-visualStart;
        if(runLength<2) {
            continue;
        }
        logicalStart=GET_INDEX(runs[i].logicalStart);
        for(j=logicalStart+1; j<logicalStart+runLength; j++) {
            index=visualMap[j];
            index1=visualMap[j-1];
            if((BIDI_ABS(index-index1)!=1) || (saveLevels[index]!=saveLevels[index1])) {
                addedRuns++;
            }
        }
    }
    if(addedRuns) {
        if(getRunsMemory(pBiDi, runCount+addedRuns)) {
            if(runCount==1) {
                /* because we switch from UBiDi.simpleRuns to UBiDi.runs */
                pBiDi->runsMemory[0]=runs[0];
            }
            runs=pBiDi->runs=pBiDi->runsMemory;
            pBiDi->runCount+=addedRuns;
        } else {
            goto cleanup1;
        }
    }
    /* split runs which are not consecutive in source text */
    for(i=runCount-1; i>=0; i--) {
        runLength= i==0 ? runs[0].visualLimit :
                          runs[i].visualLimit-runs[i-1].visualLimit;
        logicalStart=runs[i].logicalStart;
        indexOddBit=GET_ODD_BIT(logicalStart);
        logicalStart=GET_INDEX(logicalStart);
        if(runLength<2) {
            if(addedRuns) {
                runs[i+addedRuns]=runs[i];
            }
            logicalPos=visualMap[logicalStart];
            runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
                                            saveLevels[logicalPos]^indexOddBit);
            continue;
        }
        if(indexOddBit) {
            start=logicalStart;
            limit=logicalStart+runLength-1;
            step=1;
        } else {
            start=logicalStart+runLength-1;
            limit=logicalStart;
            step=-1;
        }
        for(j=start; j!=limit; j+=step) {
            index=visualMap[j];
            index1=visualMap[j+step];
            if((BIDI_ABS(index-index1)!=1) || (saveLevels[index]!=saveLevels[index1])) {
                logicalPos=BIDI_MIN(visualMap[start], index);
                runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
                                            saveLevels[logicalPos]^indexOddBit);
                runs[i+addedRuns].visualLimit=runs[i].visualLimit;
                runs[i].visualLimit-=BIDI_ABS(j-start)+1;
                insertRemove=runs[i].insertRemove&(LRM_AFTER|RLM_AFTER);
                runs[i+addedRuns].insertRemove=insertRemove;
                runs[i].insertRemove&=~insertRemove;
                start=j+step;
                addedRuns--;
            }
        }
        if(addedRuns) {
            runs[i+addedRuns]=runs[i];
        }
        logicalPos=BIDI_MIN(visualMap[start], visualMap[limit]);
        runs[i+addedRuns].logicalStart=MAKE_INDEX_ODD_PAIR(logicalPos,
                                            saveLevels[logicalPos]^indexOddBit);
    }

  cleanup1:
    /* restore initial paraLevel */
    pBiDi->paraLevel^=1;
  cleanup2:
    /* restore real text */
    pBiDi->text=text;
    /* free memory for mapping table and visual text */
    uprv_free(runsOnlyMemory);
  cleanup3:
    pBiDi->reorderingMode=UBIDI_REORDER_RUNS_ONLY;
}

/* ubidi_setPara ------------------------------------------------------------ */

U_CAPI void U_EXPORT2
ubidi_setPara(UBiDi *pBiDi, const UChar *text, int32_t length,
              UBiDiLevel paraLevel, UBiDiLevel *embeddingLevels,
              UErrorCode *pErrorCode) {
    UBiDiDirection direction;

    /* check the argument values */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return;
    } else if(pBiDi==NULL || text==NULL ||
              ((UBIDI_MAX_EXPLICIT_LEVEL<paraLevel) && !IS_DEFAULT_LEVEL(paraLevel)) ||
              length<-1
    ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }

    if(length==-1) {
        length=u_strlen(text);
    }

    /* special treatment for RUNS_ONLY mode */
    if(pBiDi->reorderingMode==UBIDI_REORDER_RUNS_ONLY) {
        setParaRunsOnly(pBiDi, text, length, paraLevel, pErrorCode);
        return;
    }

    /* initialize the UBiDi structure */
    pBiDi->pParaBiDi=NULL;          /* mark unfinished setPara */
    pBiDi->text=text;
    pBiDi->length=pBiDi->originalLength=pBiDi->resultLength=length;
    pBiDi->paraLevel=paraLevel;
    pBiDi->direction=UBIDI_LTR;
    pBiDi->paraCount=1;

    pBiDi->dirProps=NULL;
    pBiDi->levels=NULL;
    pBiDi->runs=NULL;
    pBiDi->insertPoints.size=0;         /* clean up from last call */
    pBiDi->insertPoints.confirmed=0;    /* clean up from last call */

    /*
     * Save the original paraLevel if contextual; otherwise, set to 0.
     */
    if(IS_DEFAULT_LEVEL(paraLevel)) {
        pBiDi->defaultParaLevel=paraLevel;
    } else {
        pBiDi->defaultParaLevel=0;
    }

    if(length==0) {
        /*
         * For an empty paragraph, create a UBiDi object with the paraLevel and
         * the flags and the direction set but without allocating zero-length arrays.
         * There is nothing more to do.
         */
        if(IS_DEFAULT_LEVEL(paraLevel)) {
            pBiDi->paraLevel&=1;
            pBiDi->defaultParaLevel=0;
        }
        if(paraLevel&1) {
            pBiDi->flags=DIRPROP_FLAG(R);
            pBiDi->direction=UBIDI_RTL;
        } else {
            pBiDi->flags=DIRPROP_FLAG(L);
            pBiDi->direction=UBIDI_LTR;
        }

        pBiDi->runCount=0;
        pBiDi->pParaBiDi=pBiDi;         /* mark successful setPara */
        return;
    }

    pBiDi->runCount=-1;

    /*
     * Get the directional properties,
     * the flags bit-set, and
     * determine the paragraph level if necessary.
     */
    if(getDirPropsMemory(pBiDi, length)) {
        pBiDi->dirProps=pBiDi->dirPropsMemory;
        getDirProps(pBiDi);
    } else {
        *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    /* the processed length may have changed if UBIDI_OPTION_STREAMING */
    length= pBiDi->length;
    pBiDi->trailingWSStart=length;  /* the levels[] will reflect the WS run */
    /* allocate paras memory */
    if(pBiDi->paraCount>1) {
        if(getInitialParasMemory(pBiDi, pBiDi->paraCount)) {
            pBiDi->paras=pBiDi->parasMemory;
            pBiDi->paras[pBiDi->paraCount-1]=length;
        } else {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }
    } else {
        /* initialize paras for single paragraph */
        pBiDi->paras=pBiDi->simpleParas;
        pBiDi->simpleParas[0]=length;
    }

    /* are explicit levels specified? */
    if(embeddingLevels==NULL) {
        /* no: determine explicit levels according to the (Xn) rules */\
        if(getLevelsMemory(pBiDi, length)) {
            pBiDi->levels=pBiDi->levelsMemory;
            direction=resolveExplicitLevels(pBiDi);
        } else {
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
            return;
        }
    } else {
        /* set BN for all explicit codes, check that all levels are 0 or paraLevel..UBIDI_MAX_EXPLICIT_LEVEL */
        pBiDi->levels=embeddingLevels;
        direction=checkExplicitLevels(pBiDi, pErrorCode);
        if(U_FAILURE(*pErrorCode)) {
            return;
        }
    }

    /*
     * The steps after (X9) in the UBiDi algorithm are performed only if
     * the paragraph text has mixed directionality!
     */
    pBiDi->direction=direction;
    switch(direction) {
    case UBIDI_LTR:
        /* make sure paraLevel is even */
        pBiDi->paraLevel=(UBiDiLevel)((pBiDi->paraLevel+1)&~1);

        /* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
        pBiDi->trailingWSStart=0;
        break;
    case UBIDI_RTL:
        /* make sure paraLevel is odd */
        pBiDi->paraLevel|=1;

        /* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */
        pBiDi->trailingWSStart=0;
        break;
    default:
        /*
         *  Choose the right implicit state table
         */
        switch(pBiDi->reorderingMode) {
        case UBIDI_REORDER_DEFAULT:
            pBiDi->pImpTabPair=&impTab_DEFAULT;
            break;
        case UBIDI_REORDER_NUMBERS_SPECIAL:
            pBiDi->pImpTabPair=&impTab_NUMBERS_SPECIAL;
            break;
        case UBIDI_REORDER_GROUP_NUMBERS_WITH_R:
            pBiDi->pImpTabPair=&impTab_GROUP_NUMBERS_WITH_R;
            break;
        case UBIDI_REORDER_RUNS_ONLY:
            /* we should never get here */
            pBiDi=NULL;
            pBiDi->text=NULL;           /* make the program crash! */
            break;
        case UBIDI_REORDER_INVERSE_NUMBERS_AS_L:
            pBiDi->pImpTabPair=&impTab_INVERSE_NUMBERS_AS_L;
            break;
        case UBIDI_REORDER_INVERSE_LIKE_DIRECT:
            if (pBiDi->reorderingOptions & UBIDI_OPTION_INSERT_MARKS) {
                pBiDi->pImpTabPair=&impTab_INVERSE_LIKE_DIRECT_WITH_MARKS;
            } else {
                pBiDi->pImpTabPair=&impTab_INVERSE_LIKE_DIRECT;
            }
            break;
        case UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL:
            if (pBiDi->reorderingOptions & UBIDI_OPTION_INSERT_MARKS) {
                pBiDi->pImpTabPair=&impTab_INVERSE_FOR_NUMBERS_SPECIAL_WITH_MARKS;
            } else {
                pBiDi->pImpTabPair=&impTab_INVERSE_FOR_NUMBERS_SPECIAL;
            }
            break;
        default:
            pBiDi->pImpTabPair=&impTab_DEFAULT;
            break;
        }
        /*
         * If there are no external levels specified and there
         * are no significant explicit level codes in the text,
         * then we can treat the entire paragraph as one run.
         * Otherwise, we need to perform the following rules on runs of
         * the text with the same embedding levels. (X10)
         * "Significant" explicit level codes are ones that actually
         * affect non-BN characters.
         * Examples for "insignificant" ones are empty embeddings
         * LRE-PDF, LRE-RLE-PDF-PDF, etc.
         */
        if(embeddingLevels==NULL && !(pBiDi->flags&DIRPROP_FLAG_MULTI_RUNS)) {
            resolveImplicitLevels(pBiDi, 0, length,
                                    GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, 0)),
                                    GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, length-1)));
        } else {
            /* sor, eor: start and end types of same-level-run */
            UBiDiLevel *levels=pBiDi->levels;
            int32_t start, limit=0;
            UBiDiLevel level, nextLevel;
            DirProp sor, eor;

            /* determine the first sor and set eor to it because of the loop body (sor=eor there) */
            level=GET_PARALEVEL(pBiDi, 0);
            nextLevel=levels[0];
            if(level<nextLevel) {
                eor=GET_LR_FROM_LEVEL(nextLevel);
            } else {
                eor=GET_LR_FROM_LEVEL(level);
            }

            do {
                /* determine start and limit of the run (end points just behind the run) */

                /* the values for this run's start are the same as for the previous run's end */
                start=limit;
                level=nextLevel;
                if((start>0) && (NO_CONTEXT_RTL(pBiDi->dirProps[start-1])==B)) {
                    /* except if this is a new paragraph, then set sor = para level */
                    sor=GET_LR_FROM_LEVEL(GET_PARALEVEL(pBiDi, start));
                } else {
                    sor=eor;
                }

                /* search for the limit of this run */
                while(++limit<length && levels[limit]==level) {}

                /* get the correct level of the next run */
                if(limit<length) {
                    nextLevel=levels[limit];
                } else {
                    nextLevel=GET_PARALEVEL(pBiDi, length-1);
                }

                /* determine eor from max(level, nextLevel); sor is last run's eor */
                if((level&~UBIDI_LEVEL_OVERRIDE)<(nextLevel&~UBIDI_LEVEL_OVERRIDE)) {
                    eor=GET_LR_FROM_LEVEL(nextLevel);
                } else {
                    eor=GET_LR_FROM_LEVEL(level);
                }

                /* if the run consists of overridden directional types, then there
                   are no implicit types to be resolved */
                if(!(level&UBIDI_LEVEL_OVERRIDE)) {
                    resolveImplicitLevels(pBiDi, start, limit, sor, eor);
                } else {
                    /* remove the UBIDI_LEVEL_OVERRIDE flags */
                    do {
                        levels[start++]&=~UBIDI_LEVEL_OVERRIDE;
                    } while(start<limit);
                }
            } while(limit<length);
        }
        /* check if we got any memory shortage while adding insert points */
        if (U_FAILURE(pBiDi->insertPoints.errorCode))
        {
            *pErrorCode=pBiDi->insertPoints.errorCode;
            return;
        }
        /* reset the embedding levels for some non-graphic characters (L1), (X9) */
        adjustWSLevels(pBiDi);
        break;
    }
    if(pBiDi->reorderingOptions & UBIDI_OPTION_REMOVE_CONTROLS) {
        pBiDi->resultLength -= pBiDi->controlCount;
    } else {
        pBiDi->resultLength += pBiDi->insertPoints.size;
    }
    pBiDi->pParaBiDi=pBiDi;             /* mark successful setPara */
}

U_CAPI void U_EXPORT2
ubidi_orderParagraphsLTR(UBiDi *pBiDi, UBool orderParagraphsLTR) {
    if(pBiDi!=NULL) {
        pBiDi->orderParagraphsLTR=orderParagraphsLTR;
    }
}

U_CAPI UBool U_EXPORT2
ubidi_isOrderParagraphsLTR(UBiDi *pBiDi) {
    if(pBiDi!=NULL) {
        return pBiDi->orderParagraphsLTR;
    } else {
        return FALSE;
    }
}

U_CAPI UBiDiDirection U_EXPORT2
ubidi_getDirection(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->direction;
    } else {
        return UBIDI_LTR;
    }
}

U_CAPI const UChar * U_EXPORT2
ubidi_getText(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->text;
    } else {
        return NULL;
    }
}

U_CAPI int32_t U_EXPORT2
ubidi_getLength(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->originalLength;
    } else {
        return 0;
    }
}

U_CAPI int32_t U_EXPORT2
ubidi_getProcessedLength(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->length;
    } else {
        return 0;
    }
}

U_CAPI int32_t U_EXPORT2
ubidi_getResultLength(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->resultLength;
    } else {
        return 0;
    }
}

/* paragraphs API functions ------------------------------------------------- */

U_CAPI UBiDiLevel U_EXPORT2
ubidi_getParaLevel(const UBiDi *pBiDi) {
    if(IS_VALID_PARA_OR_LINE(pBiDi)) {
        return pBiDi->paraLevel;
    } else {
        return 0;
    }
}

U_CAPI int32_t U_EXPORT2
ubidi_countParagraphs(UBiDi *pBiDi) {
    if(!IS_VALID_PARA_OR_LINE(pBiDi)) {
        return 0;
    } else {
        return pBiDi->paraCount;
    }
}

U_CAPI void U_EXPORT2
ubidi_getParagraphByIndex(const UBiDi *pBiDi, int32_t paraIndex,
                          int32_t *pParaStart, int32_t *pParaLimit,
                          UBiDiLevel *pParaLevel, UErrorCode *pErrorCode) {
    int32_t paraStart;

    /* check the argument values */
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return;
    } else if( !IS_VALID_PARA_OR_LINE(pBiDi) || /* no valid setPara/setLine */
        paraIndex<0 || paraIndex>=pBiDi->paraCount ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    pBiDi=pBiDi->pParaBiDi;             /* get Para object if Line object */
    if(paraIndex) {
        paraStart=pBiDi->paras[paraIndex-1];
    } else {
        paraStart=0;
    }
    if(pParaStart!=NULL) {
        *pParaStart=paraStart;
    }
    if(pParaLimit!=NULL) {
        *pParaLimit=pBiDi->paras[paraIndex];
    }
    if(pParaLevel!=NULL) {
        *pParaLevel=GET_PARALEVEL(pBiDi, paraStart);
    }
    return;
}

U_CAPI int32_t U_EXPORT2
ubidi_getParagraph(const UBiDi *pBiDi, int32_t charIndex,
                          int32_t *pParaStart, int32_t *pParaLimit,
                          UBiDiLevel *pParaLevel, UErrorCode *pErrorCode) {
    uint32_t paraIndex;

    /* check the argument values */
    /* pErrorCode will be checked by the call to ubidi_getParagraphByIndex */
    if( !IS_VALID_PARA_OR_LINE(pBiDi)) {/* no valid setPara/setLine */
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return -1;
    }
    pBiDi=pBiDi->pParaBiDi;             /* get Para object if Line object */
    if( charIndex<0 || charIndex>=pBiDi->length ) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return -1;
    }
    for(paraIndex=0; charIndex>=pBiDi->paras[paraIndex]; paraIndex++);
    ubidi_getParagraphByIndex(pBiDi, paraIndex, pParaStart, pParaLimit, pParaLevel, pErrorCode);
    return paraIndex;
}

U_CAPI void U_EXPORT2
ubidi_setClassCallback(UBiDi *pBiDi, UBiDiClassCallback *newFn,
                       const void *newContext, UBiDiClassCallback **oldFn,
                       const void **oldContext, UErrorCode *pErrorCode)
{
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
        return;
    } else if(pBiDi==NULL) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    if( oldFn )
    {
        *oldFn = pBiDi->fnClassCallback;
    }
    if( oldContext )
    {
        *oldContext = pBiDi->coClassCallback;
    }
    pBiDi->fnClassCallback = newFn;
    pBiDi->coClassCallback = newContext;
}

U_CAPI void U_EXPORT2
ubidi_getClassCallback(UBiDi *pBiDi, UBiDiClassCallback **fn, const void **context)
{
    if( fn )
    {
        *fn = pBiDi->fnClassCallback;
    }
    if( context )
    {
        *context = pBiDi->coClassCallback;
    }
}

U_CAPI UCharDirection U_EXPORT2
ubidi_getCustomizedClass(UBiDi *pBiDi, UChar32 c)
{
    UCharDirection dir;

    if( pBiDi->fnClassCallback == NULL ||
        (dir = (*pBiDi->fnClassCallback)(pBiDi->coClassCallback, c)) == U_BIDI_CLASS_DEFAULT )
    {
        return ubidi_getClass(pBiDi->bdp, c);
    } else {
        return dir;
    }
}