DAGISelMatcherGen.cpp   [plain text]

//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
//                     The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.

#include "DAGISelMatcher.h"
#include "CodeGenDAGPatterns.h"
#include "CodeGenRegisters.h"
#include "llvm/TableGen/Record.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include <utility>
using namespace llvm;

/// getRegisterValueType - Look up and return the ValueType of the specified
/// register. If the register is a member of multiple register classes which
/// have different associated types, return MVT::Other.
static MVT::SimpleValueType getRegisterValueType(Record *R,
                                                 const CodeGenTarget &T) {
  bool FoundRC = false;
  MVT::SimpleValueType VT = MVT::Other;
  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
  ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();

  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = *RCs[rc];
    if (!RC.contains(Reg))

    if (!FoundRC) {
      FoundRC = true;
      VT = RC.getValueTypeNum(0);

    // If this occurs in multiple register classes, they all have to agree.
    assert(VT == RC.getValueTypeNum(0));
  return VT;

namespace {
  class MatcherGen {
    const PatternToMatch &Pattern;
    const CodeGenDAGPatterns &CGP;

    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
    /// out with all of the types removed.  This allows us to insert type checks
    /// as we scan the tree.
    TreePatternNode *PatWithNoTypes;

    /// VariableMap - A map from variable names ('$dst') to the recorded operand
    /// number that they were captured as.  These are biased by 1 to make
    /// insertion easier.
    StringMap<unsigned> VariableMap;

    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
    /// the RecordedNodes array, this keeps track of which slot will be next to
    /// record into.
    unsigned NextRecordedOperandNo;

    /// MatchedChainNodes - This maintains the position in the recorded nodes
    /// array of all of the recorded input nodes that have chains.
    SmallVector<unsigned, 2> MatchedChainNodes;

    /// MatchedGlueResultNodes - This maintains the position in the recorded
    /// nodes array of all of the recorded input nodes that have glue results.
    SmallVector<unsigned, 2> MatchedGlueResultNodes;

    /// MatchedComplexPatterns - This maintains a list of all of the
    /// ComplexPatterns that we need to check.  The patterns are known to have
    /// names which were recorded.  The second element of each pair is the first
    /// slot number that the OPC_CheckComplexPat opcode drops the matched
    /// results into.
    SmallVector<std::pair<const TreePatternNode*,
                          unsigned>, 2> MatchedComplexPatterns;

    /// PhysRegInputs - List list has an entry for each explicitly specified
    /// physreg input to the pattern.  The first elt is the Register node, the
    /// second is the recorded slot number the input pattern match saved it in.
    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;

    /// Matcher - This is the top level of the generated matcher, the result.
    Matcher *TheMatcher;

    /// CurPredicate - As we emit matcher nodes, this points to the latest check
    /// which should have future checks stuck into its Next position.
    Matcher *CurPredicate;
    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);

    ~MatcherGen() {
      delete PatWithNoTypes;

    bool EmitMatcherCode(unsigned Variant);
    void EmitResultCode();

    Matcher *GetMatcher() const { return TheMatcher; }
    void AddMatcher(Matcher *NewNode);
    void InferPossibleTypes();

    // Matcher Generation.
    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    void EmitLeafMatchCode(const TreePatternNode *N);
    void EmitOperatorMatchCode(const TreePatternNode *N,
                               TreePatternNode *NodeNoTypes);

    // Result Code Generation.
    unsigned getNamedArgumentSlot(StringRef Name) {
      unsigned VarMapEntry = VariableMap[Name];
      assert(VarMapEntry != 0 &&
             "Variable referenced but not defined and not caught earlier!");
      return VarMapEntry-1;

    /// GetInstPatternNode - Get the pattern for an instruction.
    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
                                              const TreePatternNode *N);

    void EmitResultOperand(const TreePatternNode *N,
                           SmallVectorImpl<unsigned> &ResultOps);
    void EmitResultOfNamedOperand(const TreePatternNode *N,
                                  SmallVectorImpl<unsigned> &ResultOps);
    void EmitResultLeafAsOperand(const TreePatternNode *N,
                                 SmallVectorImpl<unsigned> &ResultOps);
    void EmitResultInstructionAsOperand(const TreePatternNode *N,
                                        SmallVectorImpl<unsigned> &ResultOps);
    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
                                        SmallVectorImpl<unsigned> &ResultOps);

} // end anon namespace.

MatcherGen::MatcherGen(const PatternToMatch &pattern,
                       const CodeGenDAGPatterns &cgp)
: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
  TheMatcher(0), CurPredicate(0) {
  // We need to produce the matcher tree for the patterns source pattern.  To do
  // this we need to match the structure as well as the types.  To do the type
  // matching, we want to figure out the fewest number of type checks we need to
  // emit.  For example, if there is only one integer type supported by a
  // target, there should be no type comparisons at all for integer patterns!
  // To figure out the fewest number of type checks needed, clone the pattern,
  // remove the types, then perform type inference on the pattern as a whole.
  // If there are unresolved types, emit an explicit check for those types,
  // apply the type to the tree, then rerun type inference.  Iterate until all
  // types are resolved.
  PatWithNoTypes = Pattern.getSrcPattern()->clone();

  // If there are types that are manifestly known, infer them.

/// InferPossibleTypes - As we emit the pattern, we end up generating type
/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
/// want to propagate implied types as far throughout the tree as possible so
/// that we avoid doing redundant type checks.  This does the type propagation.
void MatcherGen::InferPossibleTypes() {
  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
  // diagnostics, which we know are impossible at this point.
  TreePattern &TP = *CGP.pf_begin()->second;

  try {
    bool MadeChange = true;
    while (MadeChange)
      MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
                                                true/*Ignore reg constraints*/);
  } catch (...) {
    errs() << "Type constraint application shouldn't fail!";

/// AddMatcher - Add a matcher node to the current graph we're building.
void MatcherGen::AddMatcher(Matcher *NewNode) {
  if (CurPredicate != 0)
    TheMatcher = NewNode;
  CurPredicate = NewNode;

// Pattern Match Generation

/// EmitLeafMatchCode - Generate matching code for leaf nodes.
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
  assert(N->isLeaf() && "Not a leaf?");

  // Direct match against an integer constant.
  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
    // If this is the root of the dag we're matching, we emit a redundant opcode
    // check to ensure that this gets folded into the normal top-level
    // OpcodeSwitch.
    if (N == Pattern.getSrcPattern()) {
      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
      AddMatcher(new CheckOpcodeMatcher(NI));

    return AddMatcher(new CheckIntegerMatcher(II->getValue()));

  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
  if (DI == 0) {
    errs() << "Unknown leaf kind: " << *DI << "\n";

  Record *LeafRec = DI->getDef();
  if (// Handle register references.  Nothing to do here, they always match.
      LeafRec->isSubClassOf("RegisterClass") ||
      LeafRec->isSubClassOf("RegisterOperand") ||
      LeafRec->isSubClassOf("PointerLikeRegClass") ||
      LeafRec->isSubClassOf("SubRegIndex") ||
      // Place holder for SRCVALUE nodes. Nothing to do here.
      LeafRec->getName() == "srcvalue")

  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
  // record the register
  if (LeafRec->isSubClassOf("Register")) {
    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));

  if (LeafRec->isSubClassOf("ValueType"))
    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));

  if (LeafRec->isSubClassOf("CondCode"))
    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));

  if (LeafRec->isSubClassOf("ComplexPattern")) {
    // We can't model ComplexPattern uses that don't have their name taken yet.
    // The OPC_CheckComplexPattern operation implicitly records the results.
    if (N->getName().empty()) {
      errs() << "We expect complex pattern uses to have names: " << *N << "\n";

    // Remember this ComplexPattern so that we can emit it after all the other
    // structural matches are done.
    MatchedComplexPatterns.push_back(std::make_pair(N, 0));

  errs() << "Unknown leaf kind: " << *N << "\n";

void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
                                       TreePatternNode *NodeNoTypes) {
  assert(!N->isLeaf() && "Not an operator?");
  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());

  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
  // a constant without a predicate fn that has more that one bit set, handle
  // this as a special case.  This is usually for targets that have special
  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
  // handling stuff).  Using these instructions is often far more efficient
  // than materializing the constant.  Unfortunately, both the instcombiner
  // and the dag combiner can often infer that bits are dead, and thus drop
  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
  // to handle this.
  if ((N->getOperator()->getName() == "and" ||
       N->getOperator()->getName() == "or") &&
      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
      N->getPredicateFns().empty()) {
    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
        // If this is at the root of the pattern, we emit a redundant
        // CheckOpcode so that the following checks get factored properly under
        // a single opcode check.
        if (N == Pattern.getSrcPattern())
          AddMatcher(new CheckOpcodeMatcher(CInfo));

        // Emit the CheckAndImm/CheckOrImm node.
        if (N->getOperator()->getName() == "and")
          AddMatcher(new CheckAndImmMatcher(II->getValue()));
          AddMatcher(new CheckOrImmMatcher(II->getValue()));

        // Match the LHS of the AND as appropriate.
        AddMatcher(new MoveChildMatcher(0));
        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
        AddMatcher(new MoveParentMatcher());

  // Check that the current opcode lines up.
  AddMatcher(new CheckOpcodeMatcher(CInfo));

  // If this node has memory references (i.e. is a load or store), tell the
  // interpreter to capture them in the memref array.
  if (N->NodeHasProperty(SDNPMemOperand, CGP))
    AddMatcher(new RecordMemRefMatcher());

  // If this node has a chain, then the chain is operand #0 is the SDNode, and
  // the child numbers of the node are all offset by one.
  unsigned OpNo = 0;
  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    // Record the node and remember it in our chained nodes list.
    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
                                         "' chained node",
    // Remember all of the input chains our pattern will match.

    // Don't look at the input chain when matching the tree pattern to the
    // SDNode.
    OpNo = 1;

    // If this node is not the root and the subtree underneath it produces a
    // chain, then the result of matching the node is also produce a chain.
    // Beyond that, this means that we're also folding (at least) the root node
    // into the node that produce the chain (for example, matching
    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    // problematic, if the 'reg' node also uses the load (say, its chain).
    // Graphically:
    //         [LD]
    //         ^  ^
    //         |  \                              DAG's like cheese.
    //        /    |
    //       /    [YY]
    //       |     ^
    //      [XX]--/
    // It would be invalid to fold XX and LD.  In this case, folding the two
    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    // To prevent this, we emit a dynamic check for legality before allowing
    // this to be folded.
    const TreePatternNode *Root = Pattern.getSrcPattern();
    if (N != Root) {                             // Not the root of the pattern.
      // If there is a node between the root and this node, then we definitely
      // need to emit the check.
      bool NeedCheck = !Root->hasChild(N);

      // If it *is* an immediate child of the root, we can still need a check if
      // the root SDNode has multiple inputs.  For us, this means that it is an
      // intrinsic, has multiple operands, or has other inputs like chain or
      // glue).
      if (!NeedCheck) {
        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
        NeedCheck =
          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
          PInfo.getNumOperands() > 1 ||
          PInfo.hasProperty(SDNPHasChain) ||
          PInfo.hasProperty(SDNPInGlue) ||

      if (NeedCheck)
        AddMatcher(new CheckFoldableChainNodeMatcher());

  // If this node has an output glue and isn't the root, remember it.
  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
      N != Pattern.getSrcPattern()) {
    // TODO: This redundantly records nodes with both glues and chains.

    // Record the node and remember it in our chained nodes list.
    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
                                         "' glue output node",
    // Remember all of the nodes with output glue our pattern will match.

  // If this node is known to have an input glue or if it *might* have an input
  // glue, capture it as the glue input of the pattern.
  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
      N->NodeHasProperty(SDNPInGlue, CGP))
    AddMatcher(new CaptureGlueInputMatcher());

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    // Get the code suitable for matching this child.  Move to the child, check
    // it then move back to the parent.
    AddMatcher(new MoveChildMatcher(OpNo));
    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    AddMatcher(new MoveParentMatcher());

void MatcherGen::EmitMatchCode(const TreePatternNode *N,
                               TreePatternNode *NodeNoTypes) {
  // If N and NodeNoTypes don't agree on a type, then this is a case where we
  // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
  // reinfer any correlated types.
  SmallVector<unsigned, 2> ResultsToTypeCheck;

  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    NodeNoTypes->setType(i, N->getExtType(i));

  // If this node has a name associated with it, capture it in VariableMap. If
  // we already saw this in the pattern, emit code to verify dagness.
  if (!N->getName().empty()) {
    unsigned &VarMapEntry = VariableMap[N->getName()];
    if (VarMapEntry == 0) {
      // If it is a named node, we must emit a 'Record' opcode.
      AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
      VarMapEntry = ++NextRecordedOperandNo;
    } else {
      // If we get here, this is a second reference to a specific name.  Since
      // we already have checked that the first reference is valid, we don't
      // have to recursively match it, just check that it's the same as the
      // previously named thing.
      AddMatcher(new CheckSameMatcher(VarMapEntry-1));

  if (N->isLeaf())
    EmitOperatorMatchCode(N, NodeNoTypes);

  // If there are node predicates for this node, generate their checks.
  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));

  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),

/// EmitMatcherCode - Generate the code that matches the predicate of this
/// pattern for the specified Variant.  If the variant is invalid this returns
/// true and does not generate code, if it is valid, it returns false.
bool MatcherGen::EmitMatcherCode(unsigned Variant) {
  // If the root of the pattern is a ComplexPattern and if it is specified to
  // match some number of root opcodes, these are considered to be our variants.
  // Depending on which variant we're generating code for, emit the root opcode
  // check.
  if (const ComplexPattern *CP =
                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    const std::vector<Record*> &OpNodes = CP->getRootNodes();
    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    if (Variant >= OpNodes.size()) return true;

    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
  } else {
    if (Variant != 0) return true;

  // Emit the matcher for the pattern structure and types.
  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);

  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
  // feature is around, do the check).
  if (!Pattern.getPredicateCheck().empty())
    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));

  // Now that we've completed the structural type match, emit any ComplexPattern
  // checks (e.g. addrmode matches).  We emit this after the structural match
  // because they are generally more expensive to evaluate and more difficult to
  // factor.
  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    const TreePatternNode *N = MatchedComplexPatterns[i].first;

    // Remember where the results of this match get stuck.
    MatchedComplexPatterns[i].second = NextRecordedOperandNo;

    // Get the slot we recorded the value in from the name on the node.
    unsigned RecNodeEntry = VariableMap[N->getName()];
    assert(!N->getName().empty() && RecNodeEntry &&
           "Complex pattern should have a name and slot");
    --RecNodeEntry;  // Entries in VariableMap are biased.

    const ComplexPattern &CP =

    // Emit a CheckComplexPat operation, which does the match (aborting if it
    // fails) and pushes the matched operands onto the recorded nodes list.
    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
                                          N->getName(), NextRecordedOperandNo));

    // Record the right number of operands.
    NextRecordedOperandNo += CP.getNumOperands();
    if (CP.hasProperty(SDNPHasChain)) {
      // If the complex pattern has a chain, then we need to keep track of the
      // fact that we just recorded a chain input.  The chain input will be
      // matched as the last operand of the predicate if it was successful.
      ++NextRecordedOperandNo; // Chained node operand.

      // It is the last operand recorded.
      assert(NextRecordedOperandNo > 1 &&
             "Should have recorded input/result chains at least!");

    // TODO: Complex patterns can't have output glues, if they did, we'd want
    // to record them.

  return false;

// Node Result Generation

void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
                                          SmallVectorImpl<unsigned> &ResultOps){
  assert(!N->getName().empty() && "Operand not named!");

  // A reference to a complex pattern gets all of the results of the complex
  // pattern's match.
  if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
    unsigned SlotNo = 0;
    for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
      if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
        SlotNo = MatchedComplexPatterns[i].second;
    assert(SlotNo != 0 && "Didn't get a slot number assigned?");

    // The first slot entry is the node itself, the subsequent entries are the
    // matched values.
    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)

  unsigned SlotNo = getNamedArgumentSlot(N->getName());

  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
  // version of the immediate so that it doesn't get selected due to some other
  // node use.
  if (!N->isLeaf()) {
    StringRef OperatorName = N->getOperator()->getName();
    if (OperatorName == "imm" || OperatorName == "fpimm") {
      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));


void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
                                         SmallVectorImpl<unsigned> &ResultOps) {
  assert(N->isLeaf() && "Must be a leaf");

  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));

  // If this is an explicit register reference, handle it.
  if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
    Record *Def = DI->getDef();
    if (Def->isSubClassOf("Register")) {
      const CodeGenRegister *Reg =
      AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));

    if (Def->getName() == "zero_reg") {
      AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));

    // Handle a reference to a register class. This is used
    // in COPY_TO_SUBREG instructions.
    if (Def->isSubClassOf("RegisterOperand"))
      Def = Def->getValueAsDef("RegClass");
    if (Def->isSubClassOf("RegisterClass")) {
      std::string Value = getQualifiedName(Def) + "RegClassID";
      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));

    // Handle a subregister index. This is used for INSERT_SUBREG etc.
    if (Def->isSubClassOf("SubRegIndex")) {
      std::string Value = getQualifiedName(Def);
      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));

  errs() << "unhandled leaf node: \n";

/// GetInstPatternNode - Get the pattern for an instruction.
const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
  const TreePattern *InstPat = Inst.getPattern();

  // FIXME2?: Assume actual pattern comes before "implicit".
  TreePatternNode *InstPatNode;
  if (InstPat)
    InstPatNode = InstPat->getTree(0);
  else if (/*isRoot*/ N == Pattern.getDstPattern())
    InstPatNode = Pattern.getSrcPattern();
    return 0;

  if (InstPatNode && !InstPatNode->isLeaf() &&
      InstPatNode->getOperator()->getName() == "set")
    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);

  return InstPatNode;

static bool
mayInstNodeLoadOrStore(const TreePatternNode *N,
                       const CodeGenDAGPatterns &CGP) {
  Record *Op = N->getOperator();
  const CodeGenTarget &CGT = CGP.getTargetInfo();
  CodeGenInstruction &II = CGT.getInstruction(Op);
  return II.mayLoad || II.mayStore;

static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode *N,
                           const CodeGenDAGPatterns &CGP) {
  if (N->isLeaf())
    return 0;

  Record *OpRec = N->getOperator();
  if (!OpRec->isSubClassOf("Instruction"))
    return 0;

  unsigned Count = 0;
  if (mayInstNodeLoadOrStore(N, CGP))

  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);

  return Count;

void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode *N,
                               SmallVectorImpl<unsigned> &OutputOps) {
  Record *Op = N->getOperator();
  const CodeGenTarget &CGT = CGP.getTargetInfo();
  CodeGenInstruction &II = CGT.getInstruction(Op);
  const DAGInstruction &Inst = CGP.getInstruction(Op);

  // If we can, get the pattern for the instruction we're generating.  We derive
  // a variety of information from this pattern, such as whether it has a chain.
  // FIXME2: This is extremely dubious for several reasons, not the least of
  // which it gives special status to instructions with patterns that Pat<>
  // nodes can't duplicate.
  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);

  // NodeHasChain - Whether the instruction node we're creating takes chains.
  bool NodeHasChain = InstPatNode &&
                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);

  bool isRoot = N == Pattern.getDstPattern();

  // TreeHasOutGlue - True if this tree has glue.
  bool TreeHasInGlue = false, TreeHasOutGlue = false;
  if (isRoot) {
    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);

    // FIXME2: this is checking the entire pattern, not just the node in
    // question, doing this just for the root seems like a total hack.
    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);

  // NumResults - This is the number of results produced by the instruction in
  // the "outs" list.
  unsigned NumResults = Inst.getNumResults();

  // Loop over all of the operands of the instruction pattern, emitting code
  // to fill them all in.  The node 'N' usually has number children equal to
  // the number of input operands of the instruction.  However, in cases
  // where there are predicate operands for an instruction, we need to fill
  // in the 'execute always' values.  Match up the node operands to the
  // instruction operands to do this.
  SmallVector<unsigned, 8> InstOps;
  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
       InstOpNo != e; ++InstOpNo) {

    // Determine what to emit for this operand.
    Record *OperandNode = II.Operands[InstOpNo].Rec;
    if ((OperandNode->isSubClassOf("PredicateOperand") ||
         OperandNode->isSubClassOf("OptionalDefOperand")) &&
        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
      // This is a predicate or optional def operand; emit the
      // 'default ops' operands.
      const DAGDefaultOperand &DefaultOp
        = CGP.getDefaultOperand(OperandNode);
      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);

    const TreePatternNode *Child = N->getChild(ChildNo);

    // Otherwise this is a normal operand or a predicate operand without
    // 'execute always'; emit it.
    unsigned BeforeAddingNumOps = InstOps.size();
    EmitResultOperand(Child, InstOps);
    assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");

    // If the operand is an instruction and it produced multiple results, just
    // take the first one.
    if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))


  // If this node has input glue or explicitly specified input physregs, we
  // need to add chained and glued copyfromreg nodes and materialize the glue
  // input.
  if (isRoot && !PhysRegInputs.empty()) {
    // Emit all of the CopyToReg nodes for the input physical registers.  These
    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    // Even if the node has no other glue inputs, the resultant node must be
    // glued to the CopyFromReg nodes we just generated.
    TreeHasInGlue = true;

  // Result order: node results, chain, glue

  // Determine the result types.
  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)

  // If this is the root instruction of a pattern that has physical registers in
  // its result pattern, add output VTs for them.  For example, X86 has:
  //   (set AL, (mul ...))
  // This also handles implicit results like:
  //   (implicit EFLAGS)
  if (isRoot && !Pattern.getDstRegs().empty()) {
    // If the root came from an implicit def in the instruction handling stuff,
    // don't re-add it.
    Record *HandledReg = 0;
    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
      HandledReg = II.ImplicitDefs[0];

    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
      Record *Reg = Pattern.getDstRegs()[i];
      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
      ResultVTs.push_back(getRegisterValueType(Reg, CGT));

  // If this is the root of the pattern and the pattern we're matching includes
  // a node that is variadic, mark the generated node as variadic so that it
  // gets the excess operands from the input DAG.
  int NumFixedArityOperands = -1;
  if (isRoot &&
      (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();

  // If this is the root node and multiple matched nodes in the input pattern
  // have MemRefs in them, have the interpreter collect them and plop them onto
  // this node. If there is just one node with MemRefs, leave them on that node
  // even if it is not the root.
  // FIXME3: This is actively incorrect for result patterns with multiple
  // memory-referencing instructions.
  bool PatternHasMemOperands =
    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);

  bool NodeHasMemRefs = false;
  if (PatternHasMemOperands) {
    unsigned NumNodesThatLoadOrStore =
      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
                                   NumNodesThatLoadOrStore == 1;
    NodeHasMemRefs =
      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
                                             NumNodesThatLoadOrStore != 1));

  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
         "Node has no result");

  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
                                 ResultVTs.data(), ResultVTs.size(),
                                 InstOps.data(), InstOps.size(),
                                 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
                                 NodeHasMemRefs, NumFixedArityOperands,

  // The non-chain and non-glue results of the newly emitted node get recorded.
  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;

void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
                               SmallVectorImpl<unsigned> &ResultOps) {
  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");

  // Emit the operand.
  SmallVector<unsigned, 8> InputOps;

  // FIXME2: Could easily generalize this to support multiple inputs and outputs
  // to the SDNodeXForm.  For now we just support one input and one output like
  // the old instruction selector.
  assert(N->getNumChildren() == 1);
  EmitResultOperand(N->getChild(0), InputOps);

  // The input currently must have produced exactly one result.
  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");

  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));

void MatcherGen::EmitResultOperand(const TreePatternNode *N,
                                   SmallVectorImpl<unsigned> &ResultOps) {
  // This is something selected from the pattern we matched.
  if (!N->getName().empty())
    return EmitResultOfNamedOperand(N, ResultOps);

  if (N->isLeaf())
    return EmitResultLeafAsOperand(N, ResultOps);

  Record *OpRec = N->getOperator();
  if (OpRec->isSubClassOf("Instruction"))
    return EmitResultInstructionAsOperand(N, ResultOps);
  if (OpRec->isSubClassOf("SDNodeXForm"))
    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
  errs() << "Unknown result node to emit code for: " << *N << '\n';
  throw std::string("Unknown node in result pattern!");

void MatcherGen::EmitResultCode() {
  // Patterns that match nodes with (potentially multiple) chain inputs have to
  // merge them together into a token factor.  This informs the generated code
  // what all the chained nodes are.
  if (!MatchedChainNodes.empty())
    AddMatcher(new EmitMergeInputChainsMatcher
               (MatchedChainNodes.data(), MatchedChainNodes.size()));

  // Codegen the root of the result pattern, capturing the resulting values.
  SmallVector<unsigned, 8> Ops;
  EmitResultOperand(Pattern.getDstPattern(), Ops);

  // At this point, we have however many values the result pattern produces.
  // However, the input pattern might not need all of these.  If there are
  // excess values at the end (such as implicit defs of condition codes etc)
  // just lop them off.  This doesn't need to worry about glue or chains, just
  // explicit results.
  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();

  // If the pattern also has (implicit) results, count them as well.
  if (!Pattern.getDstRegs().empty()) {
    // If the root came from an implicit def in the instruction handling stuff,
    // don't re-add it.
    Record *HandledReg = 0;
    const TreePatternNode *DstPat = Pattern.getDstPattern();
    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
      const CodeGenTarget &CGT = CGP.getTargetInfo();
      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());

      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
        HandledReg = II.ImplicitDefs[0];

    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
      Record *Reg = Pattern.getDstRegs()[i];
      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;

  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");

  // If the matched pattern covers nodes which define a glue result, emit a node
  // that tells the matcher about them so that it can update their results.
  if (!MatchedGlueResultNodes.empty())
    AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),

  AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));

/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
/// the specified variant.  If the variant number is invalid, this returns null.
Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
                                       unsigned Variant,
                                       const CodeGenDAGPatterns &CGP) {
  MatcherGen Gen(Pattern, CGP);

  // Generate the code for the matcher.
  if (Gen.EmitMatcherCode(Variant))
    return 0;

  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
  // FIXME2: Split result code out to another table, and make the matcher end
  // with an "Emit <index>" command.  This allows result generation stuff to be
  // shared and factored?

  // If the match succeeds, then we generate Pattern.

  // Unconditional match.
  return Gen.GetMatcher();