Support Modules for Security.framework

· Last Update March 20, 2002 by dmitch
1.0
Scope

This document describes the organization and functionality of the following modules, all of which are incorporated into and/or support Security.framework on the MacOS X platform:

· The SNACC compiler

· SNACC runtime support

· SNACC-generated class library

· BSAFE

· CryptKit

· ComCryption

2.0
SNACC compiler and runtime support

The Sample Neufeld ASN.1 to C Compiler (SNACC) is a tool which processes ASN.1 source files and produces corresponding C++ classes. The main purpose of SNACC is to produce code which performs DER encoding and decoding of arbitrary ASN.1 constructs. Security.framework uses SNACC-generated code extensively in the processing and generating of certificates, public and private keys, and digital signatures. Along with the SNACC compiler proper (which does not ship with OS X) is a runtime support library which provides hand-coded implementation of basic ASN.1 data types like OCTET STRING and BIT STRING.

The source for SNACC and its support, which is all freeware, resides in Security/SecuritySNACCRuntime. Within this directory, the source for the SNACC compiler is in compiler/ and the c++ support library is in c++/.

2.1

The SNACC Compiler

2.1.1
Apple modifications to SNACC

The following changes have been made to the SNACC compiler proper in order to accommodate various needs of the Security framework.

· Integer and OID constants are #defined rather than statically allocated. Rather than the form

const AsnInt someInteger(7);

The compiler generates

#define someInteger_val
7

#define someInteger

AsnInt(someInteger_val)

Likewise, for OIDs, instead of the former

const AsnOid someOID(x,y,z, …);

The compiler generates

#define someOID_arc

x,y,z,…

#define someOID

AsnOid(someOID_arc)

Thus no data is statically allocated in the form of AsnInts or AsnOids. The old-style symbols can still be used, but such use is deprecated in favor of the someInteger_val and someOID_arc format.

This feature is controlled by the SNACC_INTS_AS_DEFINES and SNACC_OIDS_AS_DEFINES symbols which are defined in compiler/backends/c++-gen/gen-vals.h.

· The contents of print routines (void Print(ostream &os) const) are conditional on #ifndef NDEBUG. The routines are still there if NDEBUG is defined, but they do nothing and contain no code. These routines are intended to be used in debugging configurations only. This change is implemented in compiler/backends/c++-gen/gen-code.c.

· As of March 20 2002, the BDec DER-decode routines throw SnaccExcep exceptions rather than performing a longjmp. The SET_ENV argument persists in the function interface but it has been changed from a jmp_buf (768 bytes, which were copied on every call!) to an int which is ignored. There are no setjmp or longjmp calls anywhere. This feature is controlled by the SNACC_EXCEPTION_ENABLE flag found in both asn-config.h files (see the Apple_README file in the SecuritySNACCRuntime directory for more info).

· As of March 20 2002, The BDecPdu and BencPdu routines have been disabled. These were convenience routines, not used by Security.framework, which added about 47 KBytes to Security.framework. This feature is controlled by the SNACC_ENABLE_PDU flag found in both asn-config.h files

2.1.2
Building the compiler

The SNACC compiler is not built as part of the normal Security build process; the binary is only needed when changes are made to ASN.1 source in the SecurityASN1 module (see section 3.0) or when the compiler itself is changed. To build the compiler, use the PB file in SecurityX/SecuritySNACCRuntime/snacc.pbproj. Building the “UnixBuild” target will configure and build the compiler. This invokes a multitude of UNIX makefiles and GNU-style configure runs and is rather fragile. Due to a multitude of problems maintaining this source tree with CVS (which does not support the hard links upon which these Makefiles rely), a large amount of functionality from the original SNACC makefiles has been deleted. Currently, the UnixBuild target merely runs the MacOSX-Install script in the SecuritySNACCRuntime directory; this runs the configure script and builds the compiler.

The MacOSX-make makefile can be used to recompile the asn-useful.asn source via the asn-useful target. This is done rarely, typically after a compiler rebuild.

2.2

SNACC Runtime support

This module consists of a number of hand-coded (as opposed to SNACC-generated) classes representing basic ASN.1 data types like OCTET STRING and BIT STRING, as well as some other support classes like CSM_Buffer. It is compiled and linked directly as part of the Security target in the Security project. Numerous bug fixes and changes have been made to this code since it was first obtained by Apple as freeware. Unfortunately there is no well-documented repository for all such changes; some are flagged #ifdef __APPLE__; some are logged in the current CVS repository (opensource.apple.com); some are logged in previous repositories for both OS X 10.0 and OS 9.

Also in the runtime support is a set of utility functions which serve as glue between SNACC and CSSM_DATA-related objects defined in Security/cdsa/cdsa_utilities. These utilities are in SecuritySNACCRuntime/c++-lib/src/cdsaUtils.cpp. The two functions of primary interest are “one-shot” DER encode/decode functions which conveniently encode and decode any class derived from an AsnType. Various quirks in SNACC and in the base classes in this module make DER encoding and decoding somewhat cumbersome, which is why these functions were written.

The DER encode function is

void SC_encodeAsnObj(

AsnType

&asnObj,

CssmOwnedData
&derEncoded,

size_t

maxEncodedSize);

Where

asnObj is any SNACC-generated class

derEncoded contains an allocator but no data on entry; it will contain the DER encoding of asnObj on return

maxEncodedSize is the maximum possible size of the DER encoding, specified by the caller. This is necessary because SNACC does not provide any way of determining the size of an object’s DER encoding prior to encoding it.

This function is typically used like this:

Some_AsnType_subclass snaccThing;

…

…process and initialize snaccThing…

…

CssmAutoData encodedThing(someAllocator);

SC_encodeAsnObj(snaccThing, encodedThing, knownMaxLength);

The DER decode function, used to initialize a SNACC-generated class from the associated DER encoding, is

void SC_decodeAsnObj(

const CssmData
&derEncoded,

AsnType

&asnObj);

This is typically used like this:

Some_AsnType_subclass snaccThing;

CssmData derEncoding;

…

…fill derEncoding with the appropriate data…

…

SC_decodeAsnObj(derEncoding, snaccThing);

3.0
SNACC-generated class library (SecurityASN1)

This module consists of a number of ASN.1 source files which are compiled by SNACC (see section 2.1), yielding C++ classes which are compiled and linked directly into Security.framework. These classes consist of the various objects defined in the PKCS standards (Crypto Message Syntax or CMS, RSA keys, etc.) and X.509 (certificates and CRLs) as well as Apple-specific OIDs and objects.

Compiling the ASN.1 source is not performed as part of the normal Security build process, either in Engineering or by Build&Integration. Compilation is only neecessary when adding to or modifying the ASN.1 source, or when the SNACC compiler itself changes. To compile, first build the SNACC compiler (see section 2.1.2 of this document). The snacc binary must be installed in (or at least copied to) /usr/local/bin/. Then use the PB file in Security/SecurityASN1/PkcsCms.pbproj and build target “CompileAsn”. As long as you have a working, installed snacc binary, this process is painless, quick, and reliable.

4.0
RSACryptographicLibrary

The RSACryptoGraphicLibrary project is comprised of three low-level components: BSAFE, CryptKit, and ComCryption. The latter two modules are linked into Security.framework and function as part of AppleCSP; BSAFE currently is only used for testing cross-compatibility of AppleCSP. The source for none of the three modules is published as part of the Open Source effort – the BSAFE source is proprietary to RSA; the source and technology of the other two modules are proprietary to Apple.

The RSACryptographicLibrary project resides in SecurityX/BSAFE/ (named for historical reasons). Each of the three modules consists of two targets within the PB projects – one target which installs the module’s headers in a “dummy” framework in /System/Library/PrivateFrameworks, and one target which installs a static library in /usr/local/bin. The dummy framework is necessary because it is currently the only way PB can install any headers, anywhere; the dummy framework’s binary results from compiling an empty C file. Neither the private frameworks nor the static libraries ship in OS X.

4.1

BSAFE

BSAFE is an industry standard cryptographic library written by RSA Data Security. It was the basis for the AppleCSP in both OS 9 and in the first release of OS X. To facilitate the publishing of Apple’s Security software in Open Source form, BSAFE was replaced by functionally equivalent license-free software, mainly from the OpenSSL project.

The BSAFE component of RSACryptographicLibrary is a direct, literal copy of the source available from RSA. As mentioned above, it is currently used by regression tests for the CSP which ensure compatibility between the CSP and BSAFE; BSAFE is considered the “standard reference” in such testing.

Note that the current PB implementation results in all headers in the BSAFE project being installed in the resulting framework; this is really unnecesary. Only a small (TBD) number of headers are really needed by applications compiling and linking against BSAFE.

4.2

CryptKit

CryptKit contains Apple’s proprietary and patented Fast Elliptic Encryption (FEE) software. It is implemented in ANSI C for portability reasons; it has been compiled and tested on a number of platforms including OpenStep, Windows NT, MacOS9, MacOS X, and Linux.

NOTE: the CryptKit source tree in the SecurityX/Bsafe/CryptKit does not currently build as a standalone library using its makefile (unixMakeFile). Some work needs to be done, including re-introducing some source files which were deleted between the OS 9 implementation and the current one, to get this working again.

Low-level “giant integer” arithmetic routines have been written for OpenStep/i486, PPC/MacOS 9/Metrowerks, and PPC/MacOS X/gcc. These implementations are in CryptKit/giantPort_*.{h,s,c}; all use 32-bit giant digits and perform 64-bit arithmetic in assembly language. A generic low-level arithmetic package (giantPort_Generic.h), using unsigned long long arithmetic in C, can be used for other platforms. When CryptKit is ported to other platforms, the size of a giant digit may be adjusted (e.g., to 64 bits on an Alpha) via giantIntegers.h.

The current use of FEE by the CSP produces keys and signatures which are DER-encoded. This DER encoding is performed by SNACC-generated code; to maintain the ANSI C portability of CryptKit, the interface between CryptKit and the SNACC-generated C++ code is in the CSP proper. The interface required by CryptKit code to produce DER encoding is defined in CryptKit/CryptKitDER.h. CryptKit can still be used without the DER encoding extension; if the CRYPTKIT_DER_ENABLE preprocessor flag is #defined when CryptKit is built, the functions in CryptKitDER.h are assumed to be linked in. If that flag is not #defined, CryptKit’s “native style” encoding is used for keys and signatures.

The current use of FEE by the CSP enables CryptKit routines which need pseudorandom numbers (e.g., signature generation) to obtain pseudorandom data via callbacks specified when calling the relevant function. The callback is defined (as a feeRandFcn) in feeTypes.h. The CSP provides a function in such cases which obtain data from the kernel’s Yarrow implementation, which is believed to be cryptographically secure on the MacOS X platform. All of the CryptKit functions which provide for this callback treat the callback parameter as optional; when not present, CryptKit uses its own FEE-based PRNG.

Per-process initialization of CryptKit consists of two calls. One is to initCryptKit(), declared in feeFunctions.h. The other, optional step, is to register memory allocation callbacks via fallocRegister(), declared in falloc.h. The CSP uses these callbacks to allocate nonswappable memory (well, it will when a nonswapping allocator is written).

4.3

ComCryption

The ComCryption module contains an implementation of Apple’s proprietary Apple Secure Compression (ASC) technology. This is a symmetric stream cipher in which ciphertext is generally smaller than the associated plaintext (i.e., it both compresses and encrypts).

ComCryption’s API is defined entirely in comcryption.h. Like CryptKit, memory allocator callbacks are provided.

5.0
Revision History

Revision
Date

Change

0.9
9/6/2001
Initial distribution.

 0.95
3/20/2001
Disabled snacc-related setjmp/longjmp.

Disabled snacc-generated BDecPdu, BEncPdu.

Updated 2.1.2, "Building the compiler."

Support Modules for Security.framework Rev. 0.91 Page 1 of 10

