Apple Trust Policy Module Functional and Design Specification

Last Update Aug. 14, 2002 by dmitch
1.0
Scope

This document describes both the design and the functionality of the Apple Trust Policy Module (“the TP”) for the OS X platform.

2.0
Functional Specification

The TP’s functional description mainly describes the behavior of the CSSM_TP_CertGroupVerify function, which is currently the primary (possibly the only) function currently used by other Apple software. The function’s API is defined here and the mechanics of the trust policies it implements are described.

The CSSM_TP_CertGroupConstruct function is also supported; its use can easily be inferred from the following discussion, as it is merely a subset of the CertGroupVerify function (without the policy enforcement).

2.1 The CSSM_TP_CertGroupVerify function

This function basically performs two tasks. First it takes an unordered group of certificates (“certs”) and an optional list of open DB handles, and attempts to create a valid, ordered cert chain starting from the first cert passed in and terminating at a either a root cert or a cert which is verifiable by one of a set of optional Anchor Certs specified by the caller. The list of DBs passed in will be searched for any certs needed to complete the chain. The resulting ordered cert chain is optionally passed back to the caller. The description of an “ordered cert chain” can be found in section 2.3.

Second, this function performs enforcement of one of a number of Trust Policies (“Policies”). Currently there are four Policies: the default policy, the AppleBasic policy, the SSL policy, and the iSign policy. Details of these policies are found in section 2.4. The enforcement of the policy is performed on the ordered cert chain constructed as described above.

2.1 CSSM_TP_CertGroupVerify Calling syntax

CSSM_RETURN CSSM_TP_CertGroupVerify (

CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,

CSSM_CSP_HANDLE CSPHandle,

const CSSM_CERTGROUP *CertGroupToBeVerified,

const CSSM_TP_VERIFY_CONTEXT *VerifyContext,

CSSM_TP_VERIFY_CONTEXT_RESULT_PTR VerifyContextResult);

Arguments are as follows:

Three handles - to an open TP, CL, and CSP. The CSP must be capable of dealing with the signature algorithms used by the certs. The CL must be an X.509-savvy CL. It’s up to the calling app to sort this out. Currently the standard AppleCSP and AppleX509CL will suffice.

CertGroupToBeVerified contains an unordered array of raw certs in the form of a CSSM_CERTGROUP_PTR. The first cert of this list is the subject cert (leaf or end entity) which is eventually to be verified. The other certs can be in any order and may not even have any relevance to the cert chain being constructed. They may also be invalid certs. (If the first cert is invalid, the function will return CSSM_TP_INVALID_CERTIFICATE.) The contents of CertGroupToBeVerified must be:

CertType
must be CSSM_CERT_X_509{v1,v2,v3}

CertEncoding
must be CSSM_CERT_ENCODING{DER,BER}

NumCerts
is the number of certs

CertList
is an array of CSSM_DATAs, each containing one DER or

BER encoded cert

CertGroupType
must be CSSM_CERTGROUP_DATA

VerifyContext contains several fields, starting with CSSM_TP_CALLERAUTH_CONTEXT_PTR Cred, which in turn has the following interesting fields:

 CSSM_TP_POLICY_INFO Policy
Policy.NumberOfPolicyIds specifies the number of policies and must be zero or one.

Policy.PolicyIds contains an optional array of Policy OID fields (if present, the size of the array must be one). The Policy OIDs are defined in <Security/oidsalg.h> and are discussed below in section 2.4, “Trust Policies”. The FieldValue field in the PolicyField is optional, on a per-policy basis; the values are described below.

Policy.PolicyControl is currently unused.

.

NumberOfAnchorCerts and AnchorCerts are an optional array of “known trusted certs” which may anchor a cert chain. These anchor certs do not have to be roots.

DBList must be present (this field is a pointer). It must contain {0,NULL} if no DL/DB list is to be searched. (This is required because the TP_CertGroupConstruct function interface, a public function which is called by the implementation of TP_CertGroupVerify, contains this as a required field.) If a valid DLDB list is specified, that list is searched for certs to complete the cert chain.

CallerCredentials must be NULL.

VerifyTime is an optional pointer to a CSSM-formatted time string indicating the time at which the cert chain is to be evaluated. If the pointer is NULL, the cert chain is evaluated “now”.

All other CSSM_TP_CALLERAUTH_CONTEXT fields are ignored.

VerifyContext->ActionData.Data contains an optional pointer to a CSSM_APPLE_TP_ACTION_DATA struct. Currently the only field defined for this struct is CSSM_TP_ACTION_ALLOW_EXPIRED, which when set, indicates that certs’ “not after” fields are to be ignored. This applies to all policies.

VerifyContextResult, if non-NULL, on return contains the result of the operation in the form of an ordered cert chain along with detailed per-certificate status information allowing the caller to determine exactly where in the cert chain errors might have occurred. This info is returned regardless of the outcome of policy verification. If caller specifies a NULL VerifyContextResult pointer, no evidence will be returned The contents are as follows:

NumberOfEvidences = 3

Evidence[0] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_HEADER
Evidence[0] .Evidence: ptr to CSSM_TP_APPLE_EVIDENCE_HEADER

This header currently contains one field, Version, with a value of CSSM_TP_APPLE_EVIDENCE_VERSION (0). This struct and all of its contents must be freed by the caller using the standard app-level memory callback.
Evidence[1] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_CERTGROUP
Evidence[1] .Evidence: ptr to CSSM_CERTGROUP
This field contains the resulting cert group in the same format as the CSSM_CERTGROUP passed in as CertGroupToBeVerified. This struct and all of its contents must be freed by the caller using the standard app-level memory callback.

Evidence[2] .EvidenceForm: CSSM_EVIDENCE_FORM_APPLE_CERT_INFO
Evidence[1] .Evidence: ptr to CSSM_TP_APPLE_EVIDENCE_INFO
The evidence pointer refers to an array of CSSM_TP_APPLE_EVIDENCE_INFOs which is the same size (in elements) as the certs in Evidence[1].Evidence. There is a one-to-one correspondence between the elements of the CSSM_TP_APPLE_EVIDENCE_INFO and the certs in the cert group in Evidence[1].Evidence. See <Security/cssmapple.h> for a description of the contents of this struct. It provides for an arbitrary number of CSSM_RETURN codes to be assigned to a given cert via the StatusCodes field. The StatusCodes field, as well as the CSSM_TP_APPLE_EVIDENCE_INFO array itself, must be freed by the caller using the standard app-level memory callback.

2.2 CSSM_TP_CertGroupVerify Return Values

CSSM_OK : Cert chain verified all the way back to an Anchor cert and (optional) policy enforcement succeeded. Note that in this case, depending on the requested policy, a root cert may or may not have been in the incoming CertGroup or in one of the open Dbs. The root cert was definitely in the list of AnchorCerts.

CSSMERR_TP_INVALID_ANCHOR_CERT: In this case, the cert chain was validated back to a self-signed (root) cert found in either incoming cert group or in one of the DBs in DBList, but that root cert was not found in the AnchorCert list.

CSSMERR_TP_NOT_TRUSTED: No root cert found, and the last cert in the chain was not verifiable by any certs in AnchorCerts.

CSSMERR_TP_VERIFICATION_FAILURE: A root cert was found which did not self-verify.

CSSMERR_TP_VERIFY_ACTION_FAILED: The requested policy verification failed

CSSMERR_TP_INVALID_CERTIFICATE: Bad leaf certificate.

CSSMERR_TP_CERT_EXPIRED and CSSMERR_TP_CERT_NOT_VALID_YET: One of the certificates in the chain has expired or is not yet valid.

CSSMERR_TP_INVALID_REQUEST_INPUTS : no incoming VerifyContext.

2.3 Ordered Cert Chain Construction

When attempting to construct an ordered cert chain, the first thing the TP does is to match a cert’s issuer name to another cert’s subject name. The order of the constructed cert chain is such that cert[0] is the end entity, or leaf, cert; thus; for each cert n in the chain, the issuer of cert[n] is the same as the subject of cert[n+1]. The exception to this is when a root cert is found. A root cert has identical values for subject and issuer. Subject and Issuer names are normalized, per RFC 2459, section 4.1.2.4, prior to the construction of an ordered cert chain. (Normalizing involves munging of printable strings to upper case and removing redundant whitespace.)

Also, for each cert n in the chain, the public key of cert[n+1] must successfully perform a signature verification of the tbsCertificate portion of cert[n]. Again, a root cert is different; a root cert must successfully perform signature verification on itself. Signature verification is used to resolve ambiguities in the subject/issuer chain, as for example when more than one cert with a matching subject name is found for a given cert’s issuer.

Additionally, the “not before” and “not after” fields of each cert in the chain must be valid. The CSSM_TP_ALLOW_EXPIRE actionData flag can be used to ignore the (unfortunately) common case of expired certs. When this option is specified, the “not after” field of all certs is ignored.

2.4
Trust Policies

Trust policy verification involves parsing and evaluating the extensions in the cert chain. The default policy does not do this.

The policy OIDs, defined in <Security/oidsalg.h>, are as follows:

AppleBasic:
CSSMOID_APPLE_X509_BASIC

iSign:
CSSMOID_APPLE_ISIGN

SSL:
CSSMOID_APPLE_TP_SSL

Refer to RFC 2459 for descriptions of the various cert extensions discussed below.

One policy, CSSMOID_APPLE_TP_SSL, allows for additional parameters to be specified in the VerifyContext->Cred->Policy.PolicyIds->FieldValue.Data field. This optionally points to a CSSM_APPLE_TP_SSL_OPTIONS struct. Currently this struct allows one to specify the host name associated with the leaf cert; for SSL verification, this host name must match the Common Name component of the leaf cert’s distinguished name. If any of the pointers up to and including the ServerName portion of CSSM_APPLE_TP_SSL_OPTIONS is NULL then server name verification is not performed.

Per RFC 2818, the common name portion of a server cert’s distinguished name may contain the wildcard character * which is considered to match any single domain name component or components. E.g., *.a.com matches foo.a.com and bar.foo.a.com. Wild cards may not be specified in the CSSM_APPLE_TP_SSL_OPTIONS.ServerName field.
2.4.1 Certificate Extensions

The requirements for the iSign, SSL, and AppleBasic policies for each of the interesting extensions are as follows. In all cases, a failure of the policy enforcement results in a CSSMERR_TP_VERIFY_ACTION_FAILED error as well as error-specific information being associated with the errant cert in the (optionally) returned CSSM_TP_APPLE_EVIDENCE_INFO array.
Critical flag

All policies: If an extension is found which the TP does not understand and which is flagged “critical”, the policy check fails.

Basic Constraints
All: Required in all but root and leaf cert. Optional in root, with a default cA of true if not present. Optional in leaf with a default cA of false.

cA (either explicitly or by default if not present) must be false for leaf certs, true for all others. AppleBasic and SSL allow an exception for a chain of length one cert which happens to also be a root, in which case cA must be true (even though it’s also a leaf cert).

PathLengthConstraint, if present (it’s optional) is always enforced per RFC 2459.

Note: RFC 2459 says that CA certs MUST contain BasicConstraints extensions and that the extension MUST be flagged critical. In the real world this is not feasible. Verisign has intermediate certs with a BasicConstraints flagged not critical, and some RSA root certs (which are CA by default) do not contain this extension at all. Thus the critical flag in BasicConstraints is ignored by the TP and root certs do not have to have a BasicConstraints extension at all.

Authority Key Identifier
iSign: Optional, but illegal for root. If present, must not be critical.

All: see below for Key Identifier chain validation.

Subject Key Identifier

iSign: If present, must not be critical.

All: see below for Key Identifier chain validation.

Key Usage

iSign: Required for all except root and leaf. Key Usage for leaf must have digitalSignature bit set. Exception: a leaf cert without a Key Usage extension is legal if a netscape-cert-type extension is present with the Object Signing bit set.

AppleBasic, SSL: optional. Usage bits ignored for leaf cert. (Note: this does not guarantee that the leaf cert can be used for any intended purpose, as the CL will generate rather rigorous KeyUsage values based on this field and the Extended Key Usage field when extracting a key, and the CSP will enforce those usage bits.)

All: If present in non-leaf, must have keyCertSign bit set.

Extended key usage
iSign: if present in leaf, must have one usage, CSSMOID_ExtendedUseCodeSigning.

Otherwise: ignored.

Authority Key Identifier (Subject Key Identifier linkage

For all policies, if these (optional) fields are present, they are verified in sequence in a manner similar to the way in which the subject/issuer chain is verified. The keyIdentifier component of the Authority Key Identifier is used in chain verification. In this case, though, if either field is absent (i.e., Authority Key ID for cert[n] or Subject Key ID for cert[n+1] is missing, the verification doesn’t fail; it’s skipped for that step. The raw value of the encoded keyIdentifier from the Authority Key ID is compared to the raw encoded Subject Key ID.

3.0
Design Specification

3.1
General

The TP is conceptually a CDSA plugin; in current practice, the TP builds as a library which is statically linked to the Security framework for performance reasons. The source for the TP is part of the Security project, in the AppleX509TP group and directory.

3.2
Major Classes and Components

3.2.1
AppleTP, AppleTPSession

AppleTP is your basic subclass of CssmPlugin. It sole purpose in life is to instantiate AppleTPSession objects at ModuleAttach time.

AppleTPSession implements the C++-style TP SPI defined in TPPluginSession. No per-session state is maintained. Currently the supported SPI calls (CertGroup{Construct,Verify}) are implemented intpCertGroup.cpp.

3.3.2 TPCertInfo

TPCertInfo is the fundamental way the TP represents and maintains certs while performing cert group construction and verification. A TPCertInfo is constructed from the DER encoding of a cert; upon successful construction, the cert has been successfully parsed and cached in the CL, and TPCertInfo has locally cached subject and issuer names (two fields which are used extensively in cert group construction). Subsequent to construction, arbitrary fields can be obtained from the TPCertInfo (via its CL-cached cert) by the following member function:

CSSM_RETURN TPCertInfo::fetchField(

const CSSM_OID *fieldOid,

CSSM_DATA_PTR *fieldData);

Note this function should only be used when either zero or one instance of the specified field is expected to be found in the cert.

TPCertInfo also provides the logic for “not before” and “not after” testing.

NOTE: TPCertInfo’s “not before” and “not after” testing involves the use of the stdlib gmtime() function. This function is known to be not thread-safe. TP protects its own calls to gmtime with a process-wide ModuleNexus-ized Mutex, making it thread safe with regards to this problem, but if another thread in the app is also using gmtime(), TP is no longer thread safe.

Interface and implementation of TPCertInfo are in TPCerrtInfo.{h,cpp}.

3.3.3
TPCertGroup

This class provides a list of TPCertInfo pointers, to which the caller can append additional elements, access an element in an arbitrary position, and remove an element at an arbitrary position. It exists in the TP in both an unordered state (to represent incoming unordered cert groups) and ordered state (to represent a constructed cert group). Interface and implementation of TPCertGroup are in TPCerrtInfo.{h,cpp}.

3.3.4
tpPolicies.{h,cpp}

This module contains the logic which performs enforcement of iSign, SSL, and AppleBasic trust policies. When examining a (previously constructed and ordered) TPCertGroup, the first thing that happens is that all of the relevant cert extensions are fetched from each cert in the group. Policy enforcement is then a rather brute-force sequential examination of each cert’s extensions.

3.3.5
Embedded Root Certs

Known root certs are embedded in the TP by storing three values per cert: the subject name, the public key, and the public key size in bits. The stored subject name is normalized and DER-encoded (the CL provides a simple means of generating this format), simplifying subject/issuer name comparisons. The const static data for these three fields, along with comments indicating interesting info about the cert, is generated as C source by the extractCertFields program found in SecurityX/Tests/clxutils/extractCertFields. This program takes as its sole command-line argument the name of a file containing a DER encoded cert; it dumps the requisite C data declarations and comments to stdout. This result is pasted into the appropriate TP source file (iSignRootCerts.c and sslRootCerts.c for iSign and SSL, respectively).

4.0 Revision History

Rev
Date

Change
0.1
5/6/99

Creation.

0.2
5/7/99

Added CSSM_TP_VERIFY_ACTION_FAIL return code.

Added this Appendix.

0.3
….

Changed description of defaults for basicConstraints.cA.

Added CSSM_TP_INVALID_CERTIFICATE return code.

Clarified description of fully successful return.

0.4
7/28/99
Fixed misc. typos.

Changed Default policy to AppleBasic

Added CSSM_TP_CERT_EXPIRED.

Added description of verifying root cert against known root

certs.

Added Netscape exception to iSign’s Key Usage requirements.

Added section 4.2, description of Embedded Root Certs.

Removed second paragraph in 1.0 containing cynical disclaimer

regarding policy changes.

0.9
8/20/01
Update for OS X.

Added Design Spec.

0.91
10/18/01
Fixed some typos.

1.00
8/14/02
Major revision to CSSM_TP_CertGroupVerify description.

Minor updates of per-policy extension parsing.

Apple Trust Policy Module for OS X Rev. 1.00 Page 1 of 11

